ComS 455: Homework 2b
Magnets

1 Introduction

In this homework, you will investigate using scale, rotation, and translation transformations
to produce an interactive magnet simulation. Each of two magnets will be composed entirely
of four instances of a rectangle (one large rectangle for the overall magnet body, one small
one marking the negative pole, and two small ones marking the positive pole). When a user
drags a magnet close to the other, the undragged magnet is attracted or repelled, depending
on which poles are nearest.

2 Requirements

To receive full credit for this assignment, you must:

e Render two magnets, each as a horizontal unscaled rectangle overlaid with three smaller
scaled rectangles labeling the poles. The negative pole is labeled with a scaled down
instance of the rectangle, appearing as a ‘-’ sign. The positive pole is labeled similarly,
but with an additional scaled and rotated rectangle to form a ‘+’ sign. The labels
should be small enough to fit within the magnet and colored distinctly different from
the rest of the bar.

e Use only one vertex array object. Apply matrix transformations to this vertex array
to produce the magnet bodies and their poles.

e Magnets can only be translated and flipped. (Rotation is not supported by the simple
physics model available in the provided code.) On translation, the moved magnet
should alter the other magnet according to the poles and their distance from each
other. Upon a flip, the flipped magnet must interact with the other as necessary. For
example, flipping a joined magnet will result in repelling the other, as the similarly
charged poles will lie adjacent. Map your user input events to mouse interaction like
S0:

— On any mouse click, determine which magnet was clicked, if any.

— On a left mouse drag, move the magnet according to the amount of drag and have
it interact with the other.

— Respond to a right-mouse click on a magnet by flipping its poles and having it
interact with the other.

3 Magnet Struct

You are encouraged to use the following Magnet pseudocode, which encapsulates all the
details of a magnet, including a contains method which determines if a specified position
(e.g., a mouse click position) falls within the magnet’s bounds and an interact method
which adjusts the other magnet’s position. Alter it at will.

enum direction (left, right)
enum pole (positive, negative)

struct Magnet

const real WIDTH = 150
const real HEIGHT = 50

const real THRESHOLD

= 90

Vector2 position # center of magnet
boolean is_positive_left # default to true

flip
is_positive_left =

!is_positive_left

boolean contains(int x, int y)

position.x - WIDTH / 2 <= x <= position.x + WIDTH / 2 and

position.y - HEIGHT / 2 <= y <= position.y + HEIGHT / 2

Vector2 get_pole_position(direction d)

if d is left

position + (WIDTH - HEIGHT) * -0.5, 0)

else # d is right

position + (WIDTH - HEIGHT) * 0.5, 0)

interact (Magnet that) {

First find which end of each magnet is influencing the other. If this

magnet is shifted right past at least 25, of that magnet, then its active
end is its left end. Similarly, if this magnet is shifted left past at

least 75% of that magnet, that magnet’s active end is its left end.
direction this_active_end = position.x > that.position.x - WIDTH / 4 7 left
direction that_active_end = position.x < that.position.x + WIDTH / 4 7 left

Now we must determine the polarity of the active ends.

if this_active_end
this_active_pole
else // active end
this_active_pole

if that_active_end
that_active_pole
else // active end
that_active_pole

From here on out, we need only consider the active ends. How far are they

is left

= is_positive_left
is right

= lis_positive_left

is left
= that.is_positive_left
is right
= l!that.is_positive_left

: right
: right

from each other?

Vector2 diff = that.get_pole_position(that_active_end) -
get_pole_position(this_active_end)

float distance = diff.length

If they are close, we have to move that magnet. How we move it depends on
the polarity of the two ends.
if distance <= THRESHOLD

If the polarities are the same, we push that magnet away an amount
proportional to the gap between them.

if this_active_pole == that_active_pole
that.position += diff * ((THRESHOLD - distance) / distance)
else

If the polarities are opposite, we link the two magnets together.
We start by completely aligning them.
that.position = position

If the magnets are aligned horizontally, the y gap will be small
and the x gap will be large. So shift that magnet to the left or
right of this magnet.
if |diff.x| >= |diff.yl
if diff.x < 0
that.position.x -= WIDTH
else
that.position.x += WIDTH

Otherwise, the magnets are more or less aligned vertically.
else
If opposite ends of the magnets are attracting, then only
one pole of that magnet will link to this magnet. We’ll have
to shift that magnet over to stagger the alignment.
that.position.x += get_pole_position(this_active_end).x -
that.get_pole_position(that_active_end).x

Shift that magnet up or down to link to this one.
if diff.y < 0

that.position.y -= HEIGHT
else

that.position.y += HEIGHT

4 Submission

Push your code to Bitbucket. Post an example image or two on the course blog. Describe
your thought processes and any hurdles you had to overcome. Use categories spring 2015,
cs455, and postmortems.

	Introduction
	Requirements
	Magnet Struct
	Submission

