
CS 352 Homework
Baseball

1 Overview

Your task in this homework is learn about number representation and conversion between between
bases. You will do this in the context of writing a calculator named Baseball that accepts terms in
bases 2 through 36 and a handful of operations. Such a calculator belongs in every programmer’s
toolbelt. Values may be captured in variables and referenced in subsequent expressions. Consider
the following execution to see how Baseball operates:

> 6 -> 2
110
> 777_8
511
> 11 << 2
44
> 99_16
153
> :flags <- 1101_2
13
> :mask <- 110_2 -> 2
110
> :flags & :mask
100
> 253 -> 16
fd
> ~101_2 -> 2
11111111111111111111111111111010

2 Stringstream

You will occasionally wish to concatenate integers and strings or parse numbers from strings as
you complete this assignment. Java makes this pretty simple with the concatenation operator and
Integer.parseInt or Scanner. In C++, we can use the stringstream class, which effectively lets
us write to and read from a string.

#include <sstream>
using std::stringstream;
...

// To concatenate
stringstream out;
out << 404 << ".html";
string concatenated = out.str(); // stores "404.html"

// To parse
stringstream in("560");
unsigned int n;
in >> n; // stores 560

1

3 References

Pointers in C are great for sharing data cheaply between functions. However, they wear their pointer
badges proudly, and they must be dereferenced with the * or -> operators to get at their underlying
value. In C++, we favor references over pointers. These provide the cheap sharing of pointers
without pointer syntax. The only syntactic element they need is the & annotating the reference’s
type declaration. Consider the example of triple, which reads from and writes to its parameter,
which is passed by reference:

void triple(int &n) {
n = n + n + n;

}

int main(int argc, char **argv) {
int x = 10;
triple(x);
std::cout << x << std::endl; // prints 30
return 0;

}

Almost all the methods you complete in this homework will use reference parameters. When the
parameter is read-only, it must be marked with the const qualifier.

4 Requirements

Implement the files, classes, or routines described below. Place all files in a directory named
baseball at the top-level of your repository.

4.1 Makefile

Create a Makefile to compile your code. Note the capital M. Its default (topmost) rule should
build an executable named main that runs your main function. To be most useful, this target should
depend on Baseball.o, main.o, and Makefile. If any of these dependencies are newer than main,
it rebuilds the executable.

Provide two general rules for compiling *.o files from their source, one that includes a header
and one that does not:

%.o: %.cpp Makefile
$(CPP) $(CFLAGS) -c -o $@ $<

%.o: %.cpp %.h Makefile
$(CPP) $(CFLAGS) -c -o $@ $<

$@ is a builtin variable that refers to the rule’s target (the *.o file). $< refers to the leftmost
dependency (the *.cpp file). Define CPP to be g++ and CFLAGS to include debugging information
(-g) and invoke a modern C++ standard (-std=c++11).

Also provide a clean rule like the following to dispose of any derived files:

rm -f *.o main

2

4.2 Main

Write a C++ file main.cpp with a main function, which you are encouraged to use to test your code.
In fact, we will even provide a read-eval-print loop (REPL) that you may freely use.

#include <iostream>
#include "Baseball.h"

int main(int argc, char **argv) {
Baseball calc;

std::cout << "> ";
std::string line;
while (std::getline(std::cin, line)) {
try {

std::cout << calc.Evaluate(line) << std::endl;
} catch (const char *s) {

std::cerr << s << std::endl;
} catch (const std::string &s) {

std::cerr << s << std::endl;
}
std::cout << "> ";

}
std::cout << std::endl;

return 0;
}

4.3 Baseball

Write class Baseball to parse and evaluate calculator expressions. It has the following:

1. No main function. Since C++ allows only one main function to exist within a scope and since
the SpecChecker defines one to test Baseball, you cannot define one except in main.cpp.

2. Its declaration in file Baseball.h and its method definitions in file Baseball.cpp.

3. Method EvaluateDigit, which is static and which accepts one parameter: a digit of type
char. It returns the numeric value of the given digit, presumably a decimal digit or a letter.
If the digit is one of the 10 decimal digits, return its numeric value in [0, 9]. (Note that a
decimal digit character interpreted numerically has a value in [48, 57], as originally defined in
ASCII. To compute a decimal digit’s real decimal value, subtract off '0'.) If the digit is a
letter of either case, make it such that 'A' returns 10 and 'Z' returns 35, with the intervening
letters returning the intervening numbers. For example:

• Baseball::EvaluateDigit('7') → 7

• Baseball::EvaluateDigit('z') → 35

• Baseball::EvaluateDigit('C') → 12

The result for non-digit, non-letter values is undefined, but throwing a C-string will work best
with the provided main. For example:

3

stringstream out;
out << "Illegal digit: " << digit;
throw out.str();

4. Method ValueToDigit, which is static and which accepts one parameter: a value of type
unsigned char. It returns the single digit char representation of the given value. If the value
is below 10, it returns the corresponding decimal character. If the value is in [10, 35), it returns
the corresponding lowercase letter. For example:

• Baseball::ValueToDigit(3) → '3'

• Baseball::ValueToDigit(13) → 'd'

• Baseball::ValueToDigit(20) → 'k'

Throw a C-string for values outside the legal range.

5. Method FromBase, which is static and which accepts two parameters in this order:

(a) a const reference to a token of type string

(b) a base in [2, 36], of type unsigned int

It returns the value of the given token as an unsigned int. The token is in the given base.
For example, Baseball::FromBase("ff", 16) → 255.

Consider the number 392 in decimal. This can be decomposed into an accumulation of suc-
cessive powers of 10:

392 = 300 + 90 + 2

= 100× 3 + 10× 9 + 1× 2

= 102 × 3 + 101 × 9 + 100 × 2

Consider the number 75af in hexadecimal. This can be decomposed into an accumulation of
successive powers of 16:

75af16 = 163 × 7 + 162 × 5 + 161 × a+ 160 × f

= 163 × 7 + 162 × 5 + 161 × 10 + 160 × 15

We can generalize these breakdowns into the following algorithm, which converts a number
encoded as a string in a given base to its numeric value:

magnitude = 1
for each digit, from least significant to most

value = value + magnitude * digit's worth
magnitude = magnitude * base

Results are undefined if a digit is not legal in the specified base, but we recommend you throw
a C-string explaining the error.

4

6. Method ToBase, which is static and which accepts two parameters in this order:

(a) a value of type unsigned int

(b) a base in [2, 36], of type unsigned int

It returns the representation of the given value in the given base. The return value must
be a string because we may need to use digits beyond 0 through 9. This method is the
inverse of FromBase. Use lowercase letters for digits greater or equal to 10. For example,
Baseball::ToBase(255, 16) → "ff".

The representation can be computed by determining one digit at a time, from right to left,
using the following algorithm:

token = ""
if n is 0

token = "0"
else

while n > 0
find symbol for least significant digit
prepend symbol to token
remove least significant digit from n

Recall that digits can be extracted from a number using integer division and the remainder
operator, both with an appropriate second operand. For example, 182 % 10→ 2, and 182 / 10
→ 18.

7. Method EvaluateLiteral, which is static and which accepts one parameter: a const refer-
ence to a literal token of type string. It returns the literal’s value as an unsigned int. The
literal may appear in two forms: as a number that’s implicitly in base 10 (like "755") or as a
number with an explicit base appearing after an underscore (like "10110_2" or "773_8"). Use
an earlier method to do most of the conversion work. You will probably need to convert a
string into an unsigned int.

8. Method EvaluateVariable, which is const and which accepts one parameter: a variable
identifier, a reference to a const string. It returns the unsigned int value bound to the
identifier from some earlier assignment. (You’ll need some mechanism for associating strings
with unsigned ints. We recommend std::map, which uses a red-black tree to organize the
data for fast lookup. A hashtable API was only recently introduced to the C++ standard
library.)

Note that legal variable identifiers start with a colon character (:). The results are undefined
if an illegal or unbounded identifier is given, but we recommend you throw an explanatory
C-string.

9. Method EvaluateTerm, which is const and which accepts one parameter: a const reference
to a token of string. It returns the term’s value as an unsigned int. The token is either
a variable identifier or a literal. However, the first character of the token may optionally be
~, which indicates that the value should be negated. (C++ supports this operator too.) For
example:

5

• calc.EvaluateTerm("542") → 542

• calc.EvaluateTerm(":pi") → 3

• calc.EvaluateTerm("~1") → 4294967294

The results are undefined if an illegal token is given.

10. Method EvaluateOperation, which is const and which accepts three parameters in this order:

(a) a const reference to a left term of type string

(b) a const reference to an operator symbol of type string, assumed to be one of +, -, &
(bitwise and), | (bitwise or), ^ (exclusive bitwise or), << (left shift), >> (right shift), *, /
(integer division), or %.

(c) a const reference to a right term of type string

It evaluates the two terms and combines them according to the given operation, returning the
result as an unsigned int. For example:

• calc.EvaluateOperation("110_2", "<<", "2") → 24

• calc.EvaluateOperation(":pi", "+", ":pi") → 6

• calc.EvaluateOperation("~100", "/", "1000000") → 4294

The results are undefined if the operands are illegal or the operation is unknown, but we
recommend you throw a C-string.

11. Method Tokenize, which is static and which accepts one parameter: a const reference to
an expression of type string. The tokens of the expression are separated by whitespace.
This method returns the tokens as a vector of strings. (The counterpart in C++ of Java’s
ArrayList is vector.)

In Java, you could parse the string on whitespace using Scanner. In C++, you can use
stringstream. For example, this code prints all tokens:

stringstream in("it is fun to be in the same decade with you");
string token;
while (in >> token) {

std::cout << token << std::endl;
}

12. Method ExtractTargetBase, which is const and which accepts one parameter: a reference to
a list of an expression’s tokens as a vector of strings. It returns as an unsigned int the
target base for the expression’s printed result.

If the second-to-last token is "->", then the last token is assumed to be a term specifying the
target base. (Term is defined to be whatever EvaluateTerm can evaluate.) The arrow and
base term are removed from the vector. Otherwise, the target base is implicitly 10.

13. Method ExtractTargetID, which is static and which accepts one parameter: a reference to
a list of an expression’s tokens as a vector of strings. It returns as a string the identifier of
the variable to which the expression’s value should be assigned.

6

If token 1 is "<-", then token 0 is the identifier, which is assumed to start with a colon.
The arrow and identifier are removed from the vector. Otherwise, the identifier is implicitly
":last", a special builtin variable meant to hold the result of the last executed expression.

14. Method Evaluate, which accepts one parameter: a const reference to a list of an expression’s
tokens as a vector of strings. It returns as an unsigned int the value of the expression.

The tokens list is assumed to contain either a) a single term or b) a left term, an operand, and
a right term. This method should defer most of its work to methods you’ve written previously.

15. Method Evaluate, which accepts one parameter: a const reference to an expression of type
string. It returns as a string the value of the expression in the target base, storing the result
in the target variable identifier. For example:

(a) calc.Evaluate(":pi <- 3") stores 3 in variable :pi and evaluates to "3".
(b) calc.Evaluate("8 + 2 -> 2") stores 10 in variable :last and evaluates to "1010".

To contain the scope of this assignment, the expression will contain at most one two-operand
operation. The expression is assumed to be legal, with each of its tokens separated by at
least one whitespace character. This method should defer most of its work to methods you’ve
written previously.

5 Later-week Submission

To qualify for later-week submission, you must provide Makefile and main.cpp and, for class
Baseball, define the constructor, EvaluateDigit, ValueToDigit, FromBase, ToBase, and EvaluateLiteral.

6 Submission

To submit your work for grading:

1. Run the grading script from your homework directory using ../specs/grade.

2. Commit and push your work to your repository.

3. Verify that your solution is on Bitbucket by viewing your repository in a web browser.

A passing grading script does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The grading script checks some of them,
but not all.

• You must successfully submit your code to your repository. Expect to have issues with Git.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire of
tools to sniff out academic dishonesty, including: drones, moles, and a piece of software called
MOSS that rigorously compares your code to every other submission. You don’t want to live
in a world serviced by those who squeaked by through questionable means. For your future
self, career, and family, do your own work.

7

The grading script allows you to signal your instructor when requirements are met. You only
need to send an email if you qualified for later week submission and are resubmitting after the
original deadline.

8

	Overview
	Stringstream
	References
	Requirements
	Makefile
	Main
	Baseball

	Later-week Submission
	Submission

