
CS 330 Homework
Ractor

1 Overview

Your responsibility in this homework is to explore inheritance and polymorphism. You will do this
in the context of designing in C++ a library for console-based user interfaces. Your library will
wrap around the Ncurses library to allow developers to form a UI out of buttons, lists, checkboxes,
sliders, and labels.

2 Install

Download the Ncurses library and its header files on Ubuntu by entering the following at the
command line:

sudo apt-get install libncurses5-dev

3 Requirements

To receive credit for this homework, you must satisfy these requirements:

1. Place all files in directory <YOUR-REPOSITORY>/ractor.

2. All code must run on a standard Linux machine. If you use another operating system, test
your code on a Linux machine before submitting.

3. Provide a Makefile to compile your code with support for debugging (-g). Include a clean
rule that removes all object files and executables.

4. Complete the classes described in the following sections, making all instance variables private
or protected.

3.1 Rectangle

Write class Rectangle (declared in Rectangle.h and implemented in Rectangle.cpp) representing
a widget’s two-dimensional axis-aligned bounding box with the following interface:

• A constructor that accepts four ints representing the box’s left, right, top, and bottom coordi-
nates, respectively. The top-left vertex of the rectangle is at (left, top), and the bottom-right
vertex is at (right, bottom). Unlike your graphing calculator, the origin in most GUI libraries
is at the top-left corner. Assume, then, that the top coordinate is less than bottom.

• Methods GetLeft, GetRight, GetTop, GetBottom for getting the rectangle’s coordinates. Make
these methods const, as they do not need to mutate state.

• Methods SetLeft, SetRight, SetTop, SetBottom to set the rectangle’s coordinates. Each of
these methods accepts the new coordinate value as an int.

1

• Methods GetWidth and GetHeight for getting rectangle’s dimensions. A rectangle inclusively
spans its coordinates. For example, a rectangle spanning the interval [5, 8] has a width of 4.
Make these methods const.

• Method Contains that accepts two parameters in this order:

– an int x-coordinate

– an int y-coordinate

It returns a bool, which is true if and only if the coordinate falls inclusively within the bounds
of the rectangle. Make this method const.

• Method Intersects that accepts a const reference to another Rectangle as its sole parameter.
It returns a bool, which is true if and only if the two rectangles overlap at some point. You
may find it easier to solve the inverse of this problem first: when do two rectangles not
intersect?

3.2 Widget

Write class Widget (declared in Widget.h and implemented in Widget.cpp) representing an ab-
stracted widget in the Ractor library. It has the following interface:

• A constructor that accepts four ints representing the box’s left, right, top, and bottom coor-
dinates, respectively.

• A deconstructor that deletes any dynamically allocated memory. Probably you will have none.
However, since this class will serve as a superclass to others, and we may have a Widget *
pointer or a Widget & reference that polymorphically points to an instance of a derived class,
we want to make sure that the derived deconstructor gets called. So, provide this method,
make it virtual, and expect it to be overridden when it needs to be.

• Methods Contains, GetLeft, GetRight, GetTop, GetBottom that behave just like Rectangle’s.
In fact, it’s tempting to just have Widget extend Rectangle. Composition should be favored
over inheritance, however, as inheritance makes Widget vulnerable to changes orchestrated
through Rectangle’s interface.

• Method Draw, which will be implemented by subclasses to draw the widget. At the Widget
level, there is no drawing to be done. Make this method pure, which designates this class as
abstract and effectively forces non-abstract subclasses to implement it. Allow it to be called
polymorphically by making it virtual.

• Method OnMouseClick to handle mouse events. It accepts two parameters in this order:

– an int x-coordinate

– an int y-coordinate

Implement this method to ignore the event, but do not make it pure. Subclasses will have the
option of either inheriting or overriding it. Allow it to be called polymorphically by making
it virtual.

2

3.3 Window

Write class Window (declared in Window.h and implemented in Window.cpp) representing a widget
that contains other widgets and handles mouse-click events. It has the following interface:

• Widget as its superclass.

• A constructor that accepts no parameters. The window will not have a fixed bounding box,
but will span the entire terminal window. Have it set up its Widget foundation so that its
bounding box spans (-1, -1) to (-1, -1). Call the following Ncurses functions to initialize our
window:

– initscr, to initialize the Ncurses library

– noecho, which disables echoing of keys

– curs_set, to disable the cursor

– keypad, to enable the keypad (and more importantly—and ironically—mouse events) for
stdscr

– mousemask, to register for BUTTON1_CLICKED events

• A deconstructor that deletes all of a window’s child widgets.

• Method Add that accepts a pointer to a heap-allocated Widget as its sole parameter. It takes
ownership of the widget and will delete it when the window is destroyed.

• Method Draw that first clears the window using Ncurses’ clear function and then draws all
the child widgets in the order they were added.

• Method Loop that enters into an event loop, which runs indefinitely, listening for and handling
key and mouse events. Follow this pseudocode:

while not stopped
draw the window
input = getch()
if input is q

stop
else if input is KEY_MOUSE

get mouse event
for each widget

if widgets contains mouse
delegate event to widget's OnMouseClick

refresh()
endwin()

Convert the mouse coordinates from global window coordinates to local widget coordinates
before passing them to OnMouseClick. For example, suppose a List spans (10, 13) to (17, 16)
and the user clicks on (13, 14). Pass (3, 1) to the widget as the mouse position.

• Method Stop that requests the event loop to stop.

3

3.4 Label

Write class Label (declared in Label.h and implemented in Label.cpp) representing a read-only
text label. It has the following interface:

• Widget as its superclass.

• A constructor that accepts three parameters in this order:

– the x-coordinate of the label’s first character, as an int

– the label’s y-coordinate, as an int

– the label’s text, as a const reference to a string

Have it set up its Widget foundation so that its bounding box fits snugly around the text.
That is, the label "foo" at (10, 17) will span (10, 17) to (12, 17).

• Method Draw to draw the label. Use the Ncurses function mvprintw to draw the text.

• Method SetText to update the label’s text. It accepts a const reference to a string and
adjusts the widget’s bounding box accordingly. The next time the label is drawn, it will show
the updated text.

3.5 Button

Write class Button (declared in Button.h and implemented in Button.cpp) representing a clickable
button. It has the following interface:

• Widget as its superclass.

• A constructor that accepts three parameters in this order:

– the x-coordinate of the button label’s first character, as an int

– the button label’s y-coordinate, as an int

– the button’s text label, as a const reference to a string

Have it set up its Widget foundation so that its bounding box fits snugly around the label.
That is, the button with label "Submit" at (10, 17) will span (10, 17) to (15, 17).

• Method Draw to draw the button in reverse video. Use the Ncurses function mvprintw to
draw the text, but sandwich the call with attron/attroff to enable/disable the A_REVERSE
attribute.

• Method AddListener to register an observer of clicks. It accepts a listener as a parameter
of the type std::function<void()>, which stands for a function that returns nothing and
accepts no parameters. Clients of this class can register lambda listeners in the following way:

Button *button = new Button(3, 10, "Quit");
button->AddListener([&]() {

window.Stop();
});

4

Include the header functional to load this type’s declaration. Clients may register multiple
listeners.

• Method OnMouseClick to notify all listeners that the button was clicked. Notify each listener
through its apply method (operator()). For example: listener().

3.6 Checkbox

Write class Checkbox (declared in Checkbox.h and implemented in Checkbox.cpp) representing a
toggle-able checkbox. It has the following interface:

• Widget as its superclass.

• A constructor that accepts three parameters in this order:

– the x-coordinate of the checkbox’s left bracket character, as an int

– the checkbox’s y-coordinate, as an int

– the checkbox’s text label, as a const reference to a string

The checkbox will be drawn in this form: [] label, where represents a space character.
Have it set up its Widget foundation so that its bounding box fits snugly around the label plus
the spaces and brackets. That is, the checkbox with label "vegan" at (10, 17) will span (10,
17) to (18, 17).

• Method IsChecked that gives the checkbox’s current state. It returns a bool, which is true if
and only if the checkbox has been checked. Make this method const.

• Method IsChecked that sets the checkbox’s current state. It returns nothing, but accepts a
bool that is true if and only if the checkbox is to be checked.

• Method Draw to draw the checkbox. Use the Ncurses function mvprintw to draw the brackets,
spaces, and text. If the checkbox is checked, place an ’x’ between the brackets instead of a
space.

• Method AddListener to register an observer of check or uncheck events. It accepts a listener
as a parameter of the type std::function<void(bool)>, which stands for a function that
returns nothing and accepts a bool. Clients of this class can register lambda listeners in the
following way:

Checkbox *box = new Checkbox(3, 10, "vegan");
box->AddListener([&](bool is_vegan) {

// ...
});

Clients may register multiple listeners.

• Method OnMouseClick to toggle the checkbox’s state and notify all listeners that the state has
changed. Notify each listener through its apply method (operator(bool)).

5

3.7 List

Write class List (declared in List.h and implemented in List.cpp) representing a list of choices
that allows no more than one option to be selected. It has the following interface:

• Widget as its superclass.

• A constructor that accepts three parameters in this order:

– the x-coordinate of the first character of the first option, as an int

– the y-coordinate of the list’s first option, as an int

– the list’s options, as a const reference to a vector of strings

The list will be drawn in this form:

option 1
longer option 2
option 3

Have it set up its Widget foundation so that its bounding box fits snugly vertically around the
options. Fit it horizontally so that it stretches to include all characters of the longest option.
For the given example, the list at (10, 17) will span (10, 17) to (24, 19).

• Method GetSelectedIndex, which returns the index of the selected item as an int. If no item
is selected, -1 is returned. Make this method const.

• Method GetSelected, which returns the text of the selected item as a const reference to a
string. If no item is selected, the method’s behavior is undefined. Make this method const.

• Method Draw to draw the options. Use the Ncurses function mvprintw to draw each. If an
option is selected, render it in reverse video as you did with Button.

• Method AddListener to register an observer of select or deselect events. It accepts a listener as
a parameter of the type std::function<void(int)>, which stands for a function that returns
nothing and accepts an int. Clients of this class can register lambda listeners in the following
way:

List *menu = new List(40, 40, {"slow", "fast", "singularity"});
box->AddListener([&](int i) {

// ...
});

Clients may register multiple listeners.

• Method OnMouseClick to select or deselect an option and notify all listeners that the state
has changed. Use the event’s y-coordinate to determine which item was selected. If the item
was already selected prior to this click, deselect it. Notify each listener of the index of the
selected item through its apply method (operator(int)). If no item is selected, report -1 as
the selected index.

6

3.8 Slider

Write class Slider (declared in Slider.h and implemented in Slider.cpp) representing a multiline
horizontal slider. It has the following interface:

• Widget as its superclass.

• A constructor that accepts three parameters in this order:

– the x-coordinate of the slider’s leftmost tick, as an int

– the y-coordinate of the slider, as an int

– the slider’s maximum value, as an int

– the slider’s default value, as an int

A slider with a maximum of 10 and a current value of 3 will be drawn in this form:

...o.......

The minimum value for a slider is always 0, so this example shows 11 ticks spanning the
interval [0, 11]. When the current value is 0, the slider’s knob will appear at the leftmost
position. Have the constructor set up its Widget foundation so that its bounding box fits
snugly around the slider. For the given example, the slider at (10, 17) will span (10, 17) to
(20, 17).

• Method GetValue, which returns the slider’s current value as an int. Make this method const.

• Method GetMax, which returns the slider’s maximum value as an int. Make this method
const.

• Method Draw to draw the slider. Use the Ncurses function mvprintw to draw the ticks. Use
periods and a lowercase O.

• Method AddListener to register an observer of select or deselect events. It accepts a listener as
a parameter of the type std::function<void(int)>, which stands for a function that returns
nothing and accepts an int. Clients of this class can register lambda listeners in the following
way:

Slider *difficulty = new Slider(20, 15, 20, 10);
difficulty->AddListener([&](int i) {

// ...
});

Clients may register multiple listeners.

• Method OnMouseClick to set the slider’s current value and notify all listeners that the state
has changed. Use the event’s x-coordinate as the slider’s new value. Notify each listener of
the value through its apply method (operator(int)).

7

3.9 Custom Application

Write in app.cpp a main function that helps the user complete some task with a useful graphical
user interface. Make the task coherent and meaningful—not just a random collection of widgets.
Feel free to employ widgets beyond those specified above to achieve your goal. Include a run rule in
your Makefile that compiles and runs your application. Share a screenshot (or video!) on Piazza
under the ractor_share directory with a description of your GUI does.

4 Later Week

To be eligible for later-week submission, you must have a working Makefile and complete all widgets
but Window. Your custom application is required for full credit, but not later-week submission.

5 Submission

To submit your work for grading:

1. Run the grading script from your homework directory using ../specs/grade.

2. Commit and push your work to your repository.

3. Verify that your solution is on Bitbucket by viewing your repository in a web browser.

A passing grading script does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The grading script checks some of them,
but not all.

• You must successfully submit your code to your repository. Expect to have issues with Git.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire of
tools to sniff out academic dishonesty, including: drones, moles, and a piece of software called
MOSS that rigorously compares your code to every other submission. You don’t want to live
in a world serviced by those who squeaked by through questionable means. For your future
self, career, and family, do your own work.

The grading script allows you to signal your instructor when requirements are met. You only
need to send an email if you qualified for later week submission and are resubmitting after the
original deadline.

8

