CS 330 Homework
Comma-Separated Expression (CSX)

1 Overview

Your responsibility in this homework is to build an interpreter for text-based spreadsheets
or CSX files, which are like CSV files but with formulas or expressions embedded in them.
In doing so, you will gain experience writing grammars, lexing and parsing, and developing
a model of an expression in an abstract syntax tree.

2 Spreadsheet

We have provided a simple GUI for editing CSX files. Class Spreadsheet in the JAR file at
specs/grade_csx/speccheck_csx. jar in your repository is a JFrame comprised of widgets
that call down to the code you write to evaluate a formula. You can run the GUI (after
you've written your Expr, ExprString, and Interpreter classes) with the following shell
command:

java -cp ../specs/grade_csx/antlr-4.5.2-complete.jar:speccheck_csx.jar:. csx.Spreadsheet

Double-click on a cell to enter text. Cells containing formula must start with =. For example
=5 + 6 will render as 11, but 5 + 6 will be considered as plain text. Our language doesn’t
have variables, but formulas may refer to other cells via their address, as shown in the
following spreadsheet:

File

D E F G H | J
5.0 Multiplier:

>

w

(g
v

[EA4 SES0

o|lo|N|o|u|s|w|[n|—|o
=[O [N[o [[~ [w [N
w
o
o

S
@
o
o

The GUI also crudely supports filling operations. Click and drag to select several cells, and
then right-click to fill formulas to other cells. In the example above, we entered =A0 * E0
in cell BO. Then we selected B0:B9, right-clicked, and selected Fill Down.

Though we have provided a GUI, we suggest you write your own testing code—at least
initially. The GUI puts a layer of separation between your tests and your code, which makes
reasoning about and locating errors difficult.

3 SpreadsheetModel

Behind the spreadsheet GUI is a SpreadsheetModel, which stores the spreadsheet table data
decoupled from its presentation. This model acts as a variable store. When a formula that
you are evaluating references another cell, you will need to ask this model for the cell’s value
with code like the following:

Expr other = model.evaluate(column, row);

Probably you will not need to know any more about this class. However, you might find
it useful to create your own model instances as you test your code. The possibly relevant
public interface for SpreadsheetModel is as follows:

SpreadsheetModel (String filePath) // constructs a model from a given CSX file
SpreadsheetModel() // constructs a blank 10x10 model

void set(int column, int row, String cellText) // sets cell's source code
Expr evaluate(int column, int row) // evaluates cell's AST

String getSource(int column, int row) // gets cell's source code

Expr getTree(int column, int row) // gets cell's unevaluated AST

int getRowCount() // gets number of rows in table

int getColumnCount() // gets number of columns in table

4 Requirements

To receive credit for this homework, you must satisfy the requirements described in the
section below. There are a number of classes you must write, but you should find that in
fleshing out your abstract syntax tree hierarchy a lot of code will be reusable. The following
general requirements must be met:

1. Place all files in directory <YOUR-REPOSITORY>/csx.
2. All code must run on thing-0[456].
3. All Java classes must be placed in package csx.

4. Use the ANTLR 4.5 JAR file that is included in specs/grade_csx.

4.1 Address

Write a class Address that represents the address of a cell in a spreadsheet. It has the
following public interface:

1. A constructor accepting four parameters: an int column, a boolean column lock, an
int row, and a boolean row lock. If a lock is true, then the locked component of the
address won’t shift when translated. Translation is triggered in the GUI when the user
fills a formula across a range of cells.

2. A constructor accepting a String parameter identifying the address by a textual de-
scription. For example: A5 refers to column 0, row 5; B12 refers to column 1, row
12. Assume that the column is in [A, Z] and the row is in [0, 100|. If either the row
or column of this address is locked, then it is preceded by $. For example, $A5 is
column-locked, A$5 is row-locked, and A5 is both row- and column-locked.

3. Getters getRow and getColumn, which return the row and column as ints.

4. Method translate, which accept two int parameters: a column offset and a row
offset. It yields a new Address that is an independent copy of this one with this twist:
if this address is not column-locked, then the new address is shifted horizontally by
the column offset, and if this address is not row-locked, then the new address is shifted
vertically by the row offset. For example, new Address("C$1").translate(3, 5) —
F$1.

4.2 CSX Grammar
Write an ANTLR grammar named CSX. Support the following:

1. parenthetical grouping of expressions

2. primitives: integers (positive and negative), reals (positive and negative), and addresses
of the form A5 or $F10 or T36.

3. unary operators: arithmetic negation (not logical)

4. binary operators: exponentiation (using ~), addition, subtraction, multiplication, di-
vision, and modulus

5. collection operators: sum, min, max, and mean, which have the form name(from:to),
where from and to are addresses. For example, to calculate the mean of the first 5
rows and 3 columns, we write mean(A0:C4).

This grammar will look similar to the ones we wrote in class. To produce the Java lexer and
parser for your language in package csx, invoke antlr4 in the following manner:

antlr4 -package csx -o csx CSX.g

4.3 Interpreter

Write a class Interpreter containing all the callbacks that ANTLR will trigger as it walks
an expression’s parse tree. This will look very much like the ones we wrote in class. It has
at least the following public interface:

1. static method parseToAST that accepts an expression in String form and returns the
expression as a tree of Exprs, described below. For example, parseToAST("5 + 8 x 2.0")
— new ExprAdd(new ExprInteger(5), new ExprMultiply(new ExprInteger(8), new
ExprReal(2.0))).

4.4 Expr Hierarchy

The following requirements involve the classes in your expression hierarchy. They allow you
to model the source expressions in an abstract syntax tree.

4.4.1 Expr

Write an abstract class Expr that serves as the superclass of all possible expressions. It has
the following public interface:

1. A constructor accepting an int parameter for the expression’s precedence level. The
higher the number, the greater its precedence.

2. Abstract method evaluate that accepts a SpreadsheetModel parameter and yields
an Expr. Subclasses will override this to produce an appropriate value given the type
of expression it implements.

3. Abstract method translate that accepts two int parameters: a column offset and a
row offset. It returns an Expr. Subclasses will override this to make a shifted copy of
this expression.

4. Abstract method toSource that returns a “source code” representation of this expres-
sion as a String. Subclasses will override this method to turn parts of the abstract
syntax tree back into code that can be written to a file.

5. Methods toInteger, toReal, and toString, which yield int, double, and String, re-
spectively. Subclasses will override this method to “cast” the expression’s value to a cer-
tain type. At this abstract level, we don’t really know what casting means. However, in-
stead of making this method abstract, have it throw UnsupportedOperationException.
If a subclass chooses not to support a particular cast, we can just rely on the inherited
behavior to generate a runtime error.

6. Method getPrecedence that returns the expression’s precedence as an int.

4.4.2 Primitives

The following requirements involve the simplest kind of expressions we’ll encounter: plain
old values.

1. Write an abstract class ExprPrimitive that serves as the superclass of all possible
expressions comprised of just an atomic value. It has the following public interface:
(a) A constructor that sets this expression to have a precedence of 60.

(b) Method toSource that returns the source code representation of this expression
as its regular String representation, as returned by toString.

2. Write classes ExprInteger, ExprReal, and ExprString that serve as primitives in our
abstract syntax tree. They have the following similar interface:

(a) ExprPrimitive as a superclass.

(b) A constructor that accepts a parameter for the corresponding Java value (int,
double, or String).

(c) Methods toInteger, toReal, and toString. Implement these methods to allow
the caller to switch between types. For example, ExprString.toString returns
the underlying String, while ExprString.toReal extracts a double from the
String, and ExprDouble.tolInteger truncates the underlying real number. To
convert a number to a String just concatenate with the empty String. Reals
without digits after the decimal point will render with a trailing .0. For example,
new ExprReal(17).toString() — "17.0".

(d) Overridden method evaluate. Since primitives are already fully evaluated, just
return this expression without any further computation. When someone at-
tempts to evaluate a complicated expression tree, primitives serve as the recursion-
stopping leaf nodes.

(e) Overridden method translate that returns an independent copy of this expres-
sion, shifted by the specified offsets. Since shifting has no effect on primitives and
primitives are immutable, you may safely return this expression directly—without
first making an independent copy.

3. Write class ExprAddress. This class serves as a variable in our expression language.
However, instead of referring to named data, this kind of expression refers to another
cell in our spreadsheet. It has the following public interface:

(a) A constructor accepting an Address parameter.

(b) Overridden method evaluate that looks up the value identified by the address in
the SpreadsheetModel environment passed as a parameter. The model class has
a method evaluate(int column, int row) that returns the primitive value of
this cell wrapped up in an Expr.

(¢) Overridden method translate makes an independent, shifted copy of this expression—
observing any locks.
4.4.3 Unary Operators

The following requirements involve expressions of the form OPERATOR expr.

1. Write an abstract class ExprUnaryOperator that serves as the superclass of all possible
operators that apply to just one subexpression. It has the following public interface:

(a) A constructor that accepts three parameters: a subexpression, the unary opera-
tor’s symbol, and its precedence as an int.

(b) Method toSource that returns the source code representation of this expression
as the operator symbol followed immediately by the source representation of the
subexpression. If the subexpression has lower precedence, surround it with paren-
theses.

2. Write class ExprNegate. This class is the only unary operator we will support. It has
the following public interface:

(a) ExprUnaryOperator as a superclass.

(b) A constructor accepting one Expr parameter: an operand to negate (read: make
negative). It registers this expression as having symbol - and precedence 40.

(¢) Overridden method evaluate that computes this operation by recursively eval-
uating the operand and negating the result. Assume all arithmetic produces a
double—we won’t overload operators as is done in C and Java.

(d) Overridden method translate that returns a translated copy of this expression.
Translation is a recursive process.

4.4.4 Binary Operators

The following requirements involve expressions with two operands and having the form expr
OPERATOR expr.

1. Write an abstract class ExprBinaryOperator that serves as the superclass of all pos-
sible operators that apply to two subexpressions. It has the following public interface:

a constructor that accepts four parameters: a left subexpression, a right subex-
A tructor that ts f t left sub i ight sub
pression, the binary operator’s symbol, and its precedence as an int.

(b) Method toSource that returns the source code representation of this expression
as the source representation of the left subexpression immediately followed by the
operator symbol (sandwiched by a space character on either side) followed imme-
diately by the source representation of the right subexpression. If a subexpression
has lower precedence, surround it with parentheses.

2. Write classes ExprAdd, ExprSubtract, ExprMultiply, ExprDivide, ExprRemainder,
and ExprPower. These classes all have a similar interface:

(a) ExprBinaryOperator as a superclass.

(b) A constructor accepting two Expr parameters: a left operand and a right operand.
Addition and subtraction use symbols + and -, respectively, and have precedence
10. Multiplication, division, and remainder use symbols *, /, and \%, respectively,
and have precedence 20. Exponentiation has a precedence of 30.

(¢) Overridden method evaluate that computes this operation by recursively evaluat-
ing the two operands and merging the results according to the operation. Assume
all arithmetic produces a double—we won’t overload operators as is done in C
and Java.

(d) Overridden method translate that returns a translated copy of this expression.
Translation is a recursive process.

4.4.5 Functions

The following requirements involve expressions that operate on a range of cells and have the
form FUNCTION-NAME (FROM-ADDRESS:TO-ADDRESS).

1. Write an abstract class ExprFunctionCall that serves as the superclass of all possible
functions that compute a value across a block of cells. It has the following public
interface:

(a) A constructor that accepts three parameters: a from Address, a to Address, and
a function name as a String. It registers this expression with precedence 50.

(b) Method toSource that returns the source code representation of this expression as
the function’s name, a left parenthesis, the from address, a colon, the to address,
and a right parenthesis.

2. Write classes ExprMax, ExprMin, ExprSum, and ExprMean. These classes represent the
operations that can be applied to collections of data. They all have a similar public
interface:

(a) A constructor accepting two Address parameters: the address of the top-left cell
of the collection and the address of the bottom right.

(b) Overridden method evaluate that traverses the cells within the given address
range and computes the appropriate value (the maximum, minimum, sum, or
mean). Assume all arithmetic produces a double—we won’t overload operators
as is done in C and Java. Use SpreadsheetModel.evaluate(int column, int
row)—which returns a primitive wrapped up in an Expr—to look up the value of
cells.

(c¢) Overridden method translate that returns a translated copy of this expression.
Translation is a recursive process.

5 Later Week

To be eligible for later-week submission, you must have all required classes and methods.
They do not need to accomplish their specified tasks, but they must exist. We suggest
creating all classes and methods, but having the methods do nothing or return null or 0.

6 Submission
To submit your work for grading:
1. Run the grading script from your homework directory using ../specs/grade.
2. Commit and push your work to your repository.
3. Verify that your solution is on Bitbucket by viewing your repository in a web browser.

A passing grading script does not guarantee you credit. Your grade is conditioned on a few
things:

e You must meet the requirements described above. The grading script checks some of
them, but not all.

e You must successfully submit your code to your repository. Expect to have issues with

Git.

e You must not plagiarize. Write your own code. Talk about code with your classmates.
Ask questions of your instructor or TA. Do not look at others’ code. Do not ask
questions specific to your homework anywhere online but Piazza. Your instructor
employs a vast repertoire of tools to sniff out academic dishonesty, including: drones,
moles, and a piece of software called MOSS that rigorously compares your code to every
other submission. You don’t want to live in a world serviced by those who squeaked
by through questionable means. For your future self, career, and family, do your own
work.

The grading script allows you to signal your instructor when requirements are met. You
only need to send an email if you qualified for later week submission and are resubmitting
after the original deadline.

	Overview
	Spreadsheet
	SpreadsheetModel
	Requirements
	Address
	CSX Grammar
	Interpreter
	Expr Hierarchy
	Expr
	Primitives
	Unary Operators
	Binary Operators
	Functions

	Later Week
	Submission

