
CS 330 Homework
Bleakr

1 Overview

Your responsibility in this homework is to learn about assembly programming, the mechanics of
a CPU, and mixing languages. You will do this in the context of creating a virtual machine and
its visual debugger. The assembly language understood by the virtual machine is called Bleakr1.
The graphical interface will be implemented in JRuby—which provides bindings for Java’s Swing
library.

2 Bleakr ISA

Bleakr’s instruction set architecture is bleaker than Intel’s x86 or even ARM. In summary, it has
the following:

1. An input list of integers.

2. An output list of integers.

3. A mapping from human-readable string labels to instruction numbers.

4. Ten general purpose registers, named r0, r1, ..., r9.

5. A register named pc—short for program counter—for recording which instruction is next to
be executed.

6. A register named ic—short for input counter—for recording which integer input is next to be
read.

7. Instructions inc, dec, add, and sub for performing arithmetic.

8. Instructions input and output for performing I/O.

9. Instructions jmp, jpos, jneg, and jzilch for jumping to labeled instructions.

10. Instruction store for assigning a value to a register.

Before reading on, try using your intuition to manually execute this example Bleakr program given
the input 1 2 3 4:

0 input r0 <- read
1 input r1
2 add r0 r1
3 output r0
4 jmp read

1Bleakr is a Rubified contraction of the portmanteau “assem-bleak.” Compared to a high-level language, the
assembly landscape is bleak.

1



2.1 Execution

When the Bleakr VM starts up, all registers—general purpose or otherwise—have value 0. All
instructions and input are gathered into an indexable collection for use during execution. It traverses
the code to identify which labels map to which instructions.

On each step of execution, it executes the instruction currently pointed to by pc, triggering any
side effects associated with the instruction. Then it updates pc to prepare for the next instruction.
Often this means incrementing pc by 1, but jump instructions may change pc in less predictable
ways.

The virtual machine halts when it encounters one of the following situations regarding the
instruction about to be executed:

1. The instruction doesn’t exist—that is, pc is out-of-bounds.

2. The instruction doesn’t follow the grammar specified in Section 2.2.

3. The instruction is input, but no more input is available to be read—that is, ic is out-of-
bounds.

2.2 Instructions

Following is the complete grammar specification for Bleakr’s 11 instructions. The placeholders lval
and rval are discussed in Section 2.3.

add lval rval Adds the values together and stores the result in lval.

sub lval rval Subtracts rval from lval and stores the result lval.

inc lval Adds one to lval and stores the result in lval.

dec lval Subtracts one from lval and stores the result in lval.

input lval Reads the next input from the input list (as indicated by ic) and stores the
result in lval. Increments ic

output rval Emits rval to the output list.

store lval rval Copies rval into lval.

jmp label Alters pc so that the next instruction executed is the one with the given label.

jpos rval label If rval is positive, alters pc so that the next instruction executed is the one
with the given label.

jneg rval label If rval is negative, alters pc so that the next instruction executed is the one
with the given label.

jzilch rval label If rval is 0, alters pc so that the next instruction executed is the one with the
given label.

2



Any instruction may be followed by <- label, where label is an alphanumeric string that can
be used to assign a symbolic name to an instruction. Jump instructions reference these labels rather
than an instruction’s less meaningful line number. (Bleakr’s not that bleak.) Consider this example
program, which for each number N in the input, outputs all numbers [0, N]:

0 input r0 <- getN
1 store r1 0
2 jneg r0 getN <- checkN
3 output r1
4 inc r1
5 dec r0
6 jmp checkN

2.3 Operands

The operands of an instruction come in two flavors: lvalues and rvalues. Lvalues are values associated
with an identifiable location in the virtual machine—in our case, a register. Any instructions that
involve an assignment need a location to store the value and will therefore have an lvalue operand2.

We can also have values that are more temporary in nature and not necessarily associated with
a location. Literals, for instance, are part of an instruction and don’t reside in any assignable
location. Literals are rvalues—values that can appear in an expression but not as a destination for
an assignment. Registers too may be treated as rvalues when we are merely referring to their value
but aren’t assigning anything to them.

2.4 Direct vs. Indirect Addressing

Registers can be accessed directly through their names r0. . .r9. However, they can also be accessed
indirectly through another register. In the expression [r0], r0 is assumed to hold a value in the
range 0 through 9. Suppose r0 is 5. We say that [r0] refers to or points to r5.

This indirect addressing scheme can simplify certain algorithms. Suppose one wants to assign
the value 100 to registers r1 through r9. This code accomplishes the task:

0 store r1 100
1 store r2 100
2 store r3 100
3 store r4 100
4 store r5 100
5 store r6 100
6 store r7 100
7 store r8 100
8 store r9 100

But indirect addressing allows us to write this with less grunting. We set up r0 as a counter and
have it point to each of the registers. Then we indirectly store 100 through the r0 counter:

0 store r0 9
1 store [r0] 100 <- fill
2 dec r0
3 jpos r0 fill

2In fact, in high-level languages, terms that can appear on the left side of assignment statement are lvalues.
However, so are constants that reside in a particular place in memory. These don’t appear on the left-hand side of
any assignment.

3



3 Requirements

In order to complete this homework, you must satisfy these requirements:

1. Place all code in directory <YOUR-REPOSITORY>/bleakr.

2. All code must be written in JRuby and must run on thing-0[456]. You’ll need a version of
JRuby that supports recent changes to the MiniTest library used by the grader. Using RVM,
one can install a recent version with rvm install jruby-9.0.

3. Write classes BleakrVM and BleakrDebugger, described below.

4. Write at least two Bleakr programs to implement algorithms of your choosing. Algorithms
must have some definable purpose (calculates x for each input, finds the kth thing, outputs all
numbers y such that y is z, and so on) and cannot duplicate previous students’ submissions.
(This means you must look at them.) At least one program must use indirect addressing.

5. Share your two programs and a screenshot of your BleakrDebugger executing one of them
on Piazza under the folder bleakr_share. Provide a clear description of what each program
accomplishes.

3.1 BleakrVM

Write class BleakrVM in file bleakrvm.rb. This class represents a CPU for the Bleakr assembly
language. It has the following public interface:

• Method initialize, which accepts a path to a Bleakr source file and a path to an input file
containing a list of integers, one per line. It initializes the state of the virtual machine to meet
the specification described in Section 2.1.

Suppose you have the following in file numbers.in:

10
3
82

And the following Bleakr source code in echo.bleakr:

0 input r0 <- read
1 output r0
2 jmp read

One can then instantiate a BleakrVM with the following code:

BleakrVM.new('echo.bleakr', 'numbers.in')

In this case, at the end of initialize, the state of the VM will be as follows, with arrays
shown in [] and hashes shown in {}.

input: [10, 3, 82]
output: []
registers: {r0: 0, r1: 0, ..., r9: 0, pc: 0, ic: 0}
instructions: [

'input r0 <- read',

4



'output r0',
'jmp read'

]
labels: {read: 0}

• Accessors input, output, registers, instructions, and labels. They return the VM state
according to the types depicted in the initialize requirement. If you name your instance
variables in accord with these accessors, you can let Ruby automatically generate these meth-
ods for you using the attr_accessor method.

• Method resolve_lvalue, which accepts a String expression and returns a location. If the
expression is a register name (a direct address), just return the expression as is. If the ex-
pression is a register name in square brackets (an indirect address), look up the number n
stored in the specified register, and return the name of register n. Otherwise, return nil. For
example, suppose r5 is 9. Then resolve_lvalue('[r5]') → 'r9'.

• Method resolve_rvalue, which accepts a String expression and returns its value. If the
expression is a register name, return the register’s value. If the expression is a register name
in square brackets, look up the number n stored in the specified register, and return the value
of register n. For example, suppose r5 is 9 and r9 is 20. Then resolve_rvalue('[r5]') →
20. If the expression is a literal integer, return it as an integer. Otherwise, return nil.

• Method step, which evaluates the instruction pointed to by pc. Your resolve_[lr]value
methods will come in handy. If a halting situation is identified, raise an exception (a RuntimeError
in particular) with an explanatory message of your choosing. raise-ing a string is sufficient.
For example:

raise "The well's run dry. There are no more numbers to input."

Update pc accordingly. Only registers and the output list may be modified.

• Method reset, which restores the registers to their initial states and clears the output list.

3.2 BleakrDebugger

Write class BleakrDebugger in file bleakrdebugger.rb. This class represents a visual interface to
a BleakrVM as it executes. It has the following public interface:

• Method initialize that accepts a BleakrVM as the virtual machine to debug. After this
method finishes, the debugger window is visible and ready to be interacted with by the user.

• It provides a graphical user interface with at least the following features, implemented using
standard Swing components:

1. A list of the VM’s instructions, with the instruction next to be executed highlighted in
some way.

2. A list of the VM’s registers, with names clearly mapped to values.

3. A list of the VM’s input, with the number next to be read highlighted in some way.

4. A list of the VM’s output.

5



5. A widget for advancing the VM by one step.

6. A widget for resetting the VM to its initial state.

You have considerable freedom in how you design your interface. The SpecChecker does
not actively test this class, but it will prompt you to manually assert that you are meeting
the above requirements. Answer truthfully; your instructor will verify compliance when he
inspects your code.

4 Later-week Qualifications

To qualify for later-week submission, you must complete BleakrVM in its entirety.

5 Submission

To submit your work for grading:

1. Run the grading script from your homework directory using ../specs/grade.

2. Commit and push your work to your repository.

3. Verify that your solution is on Bitbucket by viewing your repository in a web browser.

A passing grading script does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The grading script checks some of them,
but not all.

• You must successfully submit your code to your repository. Expect to have issues with Git.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire of
tools to sniff out academic dishonesty, including: drones, moles, and a piece of software called
MOSS that rigorously compares your code to every other submission. You don’t want to live
in a world serviced by those who squeaked by through questionable means. For your future
self, career, and family, do your own work.

The grading script allows you to signal your instructor when requirements are met. You only
need to send an email if you qualified for later week submission and are resubmitting after the
original deadline.

6


	Overview
	Bleakr ISA
	Execution
	Instructions
	Operands
	Direct vs. Indirect Addressing

	Requirements
	BleakrVM
	BleakrDebugger

	Later-week Qualifications
	Submission

