
CS 330 Homework
Timbre

1 Overview

Your responsibility in this homework is to explore abstraction, operator overloading, and
memory management in C++ and cross-language execution. You will do so in the context
of a writing a program that generates digital sounds with various timbres. Its GUI will be
written in Java, but the sound generation code will be written in C++. This is a common
split. User interfaces are easier to develop in Java, whereas C++ gives us fast performance.

While the C++ portion of this assignment is checked by unit tests and therefore has a
firm specification, the GUI portion of this assignment is left largely unspecified. Creativity
is welcomed.

Digital Sound

Sound is a wave of pressure that propogates through the physical world. How fast a sound
wave moves determines its pitch. This rate of movement, or frequency, is measured in cycles
or oscillations per second—which we call hertz.

We record sound using some physical device that is sensitive to a wave’s changing force.
Early analog recorders used a vibrating stylus to etch a continuous representation of the
sound into foil, wax, or paper. Today, recording is done with microphones that vibrate
under the pressure waves and produce an electrical signal. Modern recording equipment
is digital—capturing only a countable sampling of the wave’s force. Pressure readings are
relative to the microphone’s resting position. When the pressure is greater than equilibrium,
we see positive values. When the pressure is lower, we see negative values. If we plot these
readings over time t for a pure frequency, we see a displacement graph like the following:

0 2 4 6 8 10 12
−32767

0

32767

time

pr
es

su
re

1

One of the beautiful things about the displacement model of sound is that we can syn-
thesize sound artificially—we don’t need to record something first. In fact, to create a sound
clip for a given frequency and volume, we simply walk along the wave generated by Equation
1:

pressure at time t = amplitude · sin(2πt · frequency) (1)

We capture the magnitude of the wave at all sample times t and write them out to disk
using some digital sound protocol like the WAV format. Our sound card and speakers will
convert these samples back into a continuous signal that is blasted toward our eardrums.

Overtones

When you push air through a trumpet or hammer down on a piano keyboard, you are
actually playing many frequencies. The frequency of the note you think you’re playing is the
fundamental frequency. You are also playing overtones, which are integer multiples of the
fundamental frequency. The overtones of 440 Hz are 2× 440 = 880 Hz, 3× 440 = 1320 Hz,
4 × 440 = 1760 Hz, and so on, with the ith overtone having frequency i ∗ 440 Hz. Sounds
composed of only one frequency—such as those generated by a machine using Equation 1—
sound artificial because they lack overtones. If one wants to synthesize sounds that mimic a
real instrument, one must mix the fundamental frequency with its overtones.

Each instrument combines a fundamental frequency and its overtones in different ways.
This unique combination of an instrument is called its timbre—pronounced TAM buhr. A
clarinet’s timbre, for example, consists of a high-amplitude fundamental frequency, low-
amplitude first overtone, high-amplitude second overtone, low-amplitude third overtone,
high-amplitude fourth overtone, and so on. The odd overtones are nearly mute, while the
even overtones start with high amplitudes but diminish:

R
el

at
iv

e
A

m
pl

itu
de

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Fun
da

m
en

ta
l

Ove
rto

ne
 1

Ove
rto

ne
 2

Ove
rto

ne
 3

Ove
rto

ne
 4

Ove
rto

ne
 5

Ove
rto

ne
 6

Ove
rto

ne
 7

Ove
rto

ne
 8

Ove
rto

ne
 9

Ove
rto

ne
 1

0

Ove
rto

ne
 1

1

Ove
rto

ne
 1

2

Ove
rto

ne
 1

3

2

The relative amplitudes sum to 1.

2 Requirements

In order to complete this homework, you must satisfy these requirements:

1. Place all files in <YOUR-REPOSITORY>/timbre. Case matters.

2. Write Music.{h,cpp} to map notes to frequencies, as described below.

3. Write Samples.{h,cpp} to generate and mix sound clips, as described below.

4. Read no uninitialized memory, leak no memory, and commit no other such violations
of memory, as determined by valgrind.

5. Write a GUI for generating sounds and exporting them to WAV files, as described
below.

6. Write makefile. When run with make, it must compile your code to produce an
executable. When compiling C code, include -g in the options to retain debugging
information in the machine code. When run with make clean, it must remove all
generated files, including class files, object, and library files. When run with make

gui, it runs your complete sound generating program for interactive use. Do not use
any absolute paths—I should be able to checkout your project on my machine without
depending on files on your machine.

7. Share a screenshot of your GUI and a sample WAV file generated by your program on
Piazza, under folder timbre.

To be eligible for later-week submission, you must successfully complete the two methods in
Music.cpp and a makefile. Successful completion is determined by the grading script and
the unit tests in unit tests1.cpp.

2.1 Music.{h,cpp}
Complete the following requirements for mapping a note name to its frequency:

1. Write function GetHalfStepID to accept a note name as const string reference. The
name consists of the note’s letter (A-G), its optional sharpness of flatness (which raise
or lower the frequency), and its octave. For example, an A in the 5th octave has name
A5, a C] in octave 6 has name C+6, and an E[in octave 4 has name E-4. It returns as
an int the note’s half-step ID.

To map a note to its half-step ID, consider the half-step IDs of all possible notes in
the first octave:

3

C0 C+0/D-0 D0 D+0/E-0 E0/F-0 E+0/F0 F+0/G-0 G0 G+0/A-0 A0 A+0/B-0 B0/C-1
0 1 2 3 4 5 6 7 8 9 10 11

Note that because of sharps and flats, two different names may often generate the same
half-step ID.

The IDs of the second octave are offsets of the first:

C1 C+1/D-1 D1 D+1/E-1 E1/F-1 E+1/F1 F+1/G-1 G1 G+1/A-1 A1 A+1/B-1 B1/C-2
12 13 14 15 16 17 18 19 20 21 22 23

And so it goes. Note the octave starts at C, not A.

Implementation hint: you can write this function without any loops or monstrous
arrays. Use the letter of the note as an index into a baseline 7-element array. Use the
octave to determine how far away you are from the baseline array.

2. Write function GetFrequency that accepts a note’s name as a const string reference,
just like GetHalfStepID, and returns its frequency as a float. Calculate the frequency
of note X using these equations:

frequency of A4 = 440

magic number = 2
1
12

distance of X from A4 = halfstep ID of X− halfstep ID of A4

frequency of X = frequency of A4 ·magic numberdistance of X from A4

3. Declare functions GetHalfStepID and GetFrequency in Music.h. Define them in
Music.cpp. Place them in namespace music.

2.2 Samples.{h,cpp}
Complete the following requirements for generating and mixing sound clips:

1. Write a Samples class with the following public interface:

(a) A constructor for sampling a given note. It accepts a frequency as a float and
a duration as an int. It generates and associates with this instance the samples
of sine wave defined by the given frequency and duration. How do we do this?
First, let’s make some assumptions:

� The duration is one of 1 (whole note), 2 (half note), 4 (quarter note), 8 (eighth
note), and 16 (sixteenth note).

� The sample rate to be 22050, meaning we will generate 22050 samples for
each second of sound. You will need this value several times, so defining it as
a constant is probably a good idea.

� A quarter note corresponds to a single beat in the music.

� The music plays at 120 beats per minute.

4

� Amplitude is initially 1, meaning the note is at full volume.

With these (arbitrary) conventions in place, let’s first figure out how many total
samples we’ll need for our samples:

beats per minute = 120 (2)

samples per second = 22050 (3)

beats per second =
beats per minute

60
(4)

seconds per beat =
1

beats per second
(5)

seconds per whole note = seconds per beat× 4 (6)

seconds for this note =
seconds per whole note

duration
(7)

samples count for this note = dseconds for this note× sample per seconde (8)

We now know how many samples we need. We can generate the sample values
themselves by iterating through the samples and applying Equation 1. However,
this equation expects a time value t. Somehow we’ll need to convert a sample
index into a time value. If we just had a value that told us how many seconds
long each sample was, we could turn index i into time t:

i �����samples×?
seconds

����sample
= t seconds (9)

We do have such a value—at least, we have the reciprocal samples per second from
which we can derive this value. With all unknowns determined, we can generate
the samples of the sine wave for this note.

Please use floats to store your samples.

(b) Write a constructor that wraps up a pre-made samples array. It accepts an int

number of samples and a float pointer to a dynamically-allocated array of sam-
ples. The class considers the pointed-to memory as its own. The constructor does
not make its own copy, and you will ultimately need to free the block when you
find its no longer needed.

(c) A copy constructor that accepts a const reference to another Samples instance.
This constructor clones this instance using the parameter as a template. The two
instances do not share memory—this is a deep copy.

(d) A destructor that frees any dynamically allocated memory persisted by this in-
stance.

(e) A const GetLength method that returns the number of samples in this instance.

(f) A [] method that accepts an int sample index i and returns the ith sample as
a float reference. This method is needed to outside clients can both read and
write to a unprotected Samples instance.

5

(g) A const [] method that accepts an int sample index i and returns the ith sample
as a const float reference. This method is needed so outside clients can read
samples from a read-only Samples instance.

(h) An = method that accepts another Samples instance as a const reference and
returns a reference to this instance. If this is not a self-assignment, this instance’s
private members are replaced by copies of the parameter’s. Do not leak any
memory.

(i) A *= method that accepts a float scale factor and returns a reference to this
instance. It scales each sample by the scale factor. This method is used to raise
or lower the amplitude/volume of the sound.

(j) An |= method that accepts another Samples instance as a const reference and
returns a reference to this instance. It mixes the parameter’s samples with this
instance’s samples. One mixes sounds by adding pressure values together. You
may assume that the two instances have the same length, though this isn’t a
great assumption. An exception or assert statement are safer, but neither is
mandated.

(k) A += method that accepts another Samples instance as a const reference and
returns a reference to this instance. It appends all the samples of the parameter
after the samples of this instance. You will likely need to create a new array large
enough to hold the combined samples arrays. Do not leak memory.

(l) A * method that accepts a float scale factor and returns a new Samples instance
based on this instance, but with all its samples scaled. This method is similar to
*=, but it doesn’t change the invoking instance. In fact, you can use your copy
constructor and *= to implement this method.

(m) A WriteWAV method that accepts a path as a const string reference. It writes
the samples out to a WAV file at the specified path. The WAV protocol is de-
scribed at http://www.twodee.org/forothers/wav1.

Implementation hint: I prefer using the C API for writing binary files. Functions
fopen, fprintf, fwrite, and fclose made the task straightforward. I also con-
verted the floats to shorts before writing out the file. This involved scaling by
32767 and casting each sample as I dropped it into a new shorts array.

2. Declare the Samples class in Samples.h. Define it in Samples.cpp. Place it in the
default namespace.

I suggest you test this code before jumping in to the GUI. However, please put your main

function in a separate file. Samples.cpp and Music.cpp must not contain their own main

function, otherwise the unit tests in the grader (which define their own main) will fail to
compile.

1Thanks Craig Stuart Sapp, Scott Wilson, and Stanford University for documenting the protocol and the
Internet Archive for preserving their work.

6

http://www.twodee.org/forothers/wav

2.3 GUI

Your GUI must meet the following specification:

1. It is written in Java but calls down to your C++ code via the Java Native Interface
(JNI) to generate samples and WAV files.

2. It allows the user to configure a note (a frequency and duration) and the relative
amplitudes of its fundamental frequency and overtones. What widgets you use to
accomplish this are up to you.

3. It allows the user to assemble a series of notes together into a song.

4. It allows the user to export a WAV file for the assembled song to a destination of the
user’s choosing (see JFileChooser).

3 Submission

To submit your work for grading:

1. Run the grading script from your homework directory using ../specs/grade.

2. Commit and push your work to your repository.

3. Verify that your solution is on Bitbucket by viewing your repository in a web browser.

A passing grading script does not guarantee you credit. Your grade is conditioned on a few
things:

� You must meet the requirements described above. The grading script checks some of
them, but not all.

� You must successfully submit your code to your repository. Expect to have issues with
Git.

� You must not plagiarize. Write your own code. Talk about code with your classmates.
Ask questions of your instructor or TA. Do not look at others’ code. Do not ask
questions specific to your homework anywhere online but Piazza. Your instructor
employs a vast repertoire of tools to sniff out academic dishonesty, including: drones,
moles, and a piece of software called MOSS that rigorously compares your code to every
other submission. You don’t want to live in a world serviced by those who squeaked
by through questionable means. For your future self, career, and family, do your own
work.

The grading script allows you to signal your instructor when requirements are met. You
only need to send an email if you are resubmitting.

7

	Overview
	Requirements
	Music.{h,cpp}
	Samples.{h,cpp}
	GUI

	Submission

