
CS 330 Homework
Regexercise

1 Overview

Your responsibility in this homework is to fall in love with regular expressions. You will do
so in the context of writing a handful of regexes for ten independent pattern-matching and
substitution tasks.

Regular expressions are available in many languages. However, in most of these languages,
regular expressions are not defined in the syntax of the core language. Rather, they are
relegated to a library. Ruby is a notable exception, making regular expressions a first-class
type in the language (instead of awkwardly piggybacking strings).

2 Requirements

To receive credit for this homework, you must satisfy these requirements:

1. Place all files in directory <YOUR-REPOSITORY>/regexercise.

2. Use a Ruby interpreter 1.9 or greater. Run ruby -v to check the version. See the
course blog for instructions on installing your own version of Ruby. Older versions of
Ruby do not support lookaround assertions.

3. All code must run on thing-0[456].

4. Since Ruby supports a functional style of programming, you should use loops minimally—
in particular, for and while are completely unnecessary. String.scan and gsub

should be your primary tools for iteratively processing text.

5. Write script wrap to wrap a file’s text at roughly a specified number of characters. The
script accepts two command-line parameters: the path to a file containing the text to
be wrapped and the number of characters at which to wrap. For example, suppose
there’s a file in the working directory named numbers.txt that contains the following
text:

12345 789

123 56

12 4 6

Running ./wrap numbers.txt 4 produces

12345

789

123

56

1

12 4

6

All lines with more than 4 characters are broken at the nearest space after the 4th
character. This space and any immediate successors are replaced by a linebreak. The
wrapped text is written to standard output.

Implementation hint: find all spans of characters with length in [1, ncolumns] and
followed by a space, linebreak, or end-of-file. These characters represent places where
it’s legal break a line. Replace the matching text after these spans with a linebreak.

6. Write script classify that determines if the name of a Java source file matches the
public class that is defined in it. The script accepts one command-line parameter:
the path to a Java source file. If the class defined in the file matches the root of the
basename of the path, exit with status 0. Otherwise, exit with status 1. Suppose file
../Monster.java contains the following text:

public class Monster {

...

}

Running ./classify ../Monster.java && echo $? yields a 0. You may assume that
the main class defined in the file is opened all on one line, starting with an unindented
public. The line may contain modifiers like abstract but the class name will be
preceded by class. Ignore interfaces and enums.

7. Write script imsort to sort contiguous sequences of import statements in a Java
source code file. The script accepts one command-line parameter: the path to a
Java source file. It sorts each series of import statements independently, and writes
the entire reorganized source code to standard output. For example, suppose file
Microwaveable.java contains the following text:

import java.util.Scanner;

import java.io.FileNotFoundException;

import java.awt.Robot;

import edu.uwec.rescom.IoT;

public interface Microwaveable {

...

}

Running ./imsort Microwaveable.java produces the following output:

import java.io.FileNotFoundException;

import java.util.Scanner;

import edu.uwec.rescom.IoT;

import java.awt.Robot;

2

public interface Microwaveable {

...

}

Implementation hint: give gsub a pattern that matches an entire sequence at a time,
then pass the resulting lines to a block that manipulates the text. Look at the Ruby
string and array documentation to see what these classes afford you.

8. Write script mesozoicize to annotate utterances of the form “# million years ago” in
a file with parenthesized references to the appropriate geologic period of the Mesozoic
Era. If the number is in [65, 143], the period is Cretaceous. If the number is in [144,
205], the period is Jurassic. If the number is in [206, 248], the period is Triassic. The
scripts accepts a single command-line parameter: the path to a file containing the text
to be annotated. It annotates each reference to the Mesozoic Era and writes the results
to standard output. For example, suppose dinos contains the following text:

Eoraptor appeared 231 million years ago.

Stegosaurus appeared 155 millions years ago.

Running ./mesozoicize dinos produces:

Eoraptor appeared 231 million years ago (Triassic).

Stegosaurus appeared 155 millions years ago (Jurassic).

If statements are not allowed on this problem. Use the range-matching/alternation
idea discussed in class. You may assume integral numbers.

9. Write script preprocess to insert #included text into a file much like the C prepro-
cessor does. The script accepts one command-line parameter: the path to the file to
preprocess. Any occurrences of form #include "some/path" in the text are replaced
by the text contained in the file at some/path. (Do not interpret some/path literally.
Whatever appears between the quotation marks is the path to the file.) The results
are written to standard output. For example, suppose color.h contains the text void
red(); and paint.c contains the following:

#include "color.h"

int main() {

..

}

Running ./preprocess paint.c produces the following output:

void red();

int main() {

..

}

3

If the included file contains #include directives of its own, also process them.

Implementation hint: recursion requires naming your code so that you can call it, so
write a function that takes in a file, reads it, and substitutes all its #include directives.
Give gsub a block that recursively invokes your function on the matched paths.

10. Write script grepp to match lines in a file to a specified pattern, similar to grep. The
script accepts two command-line parameters: a Ruby regular expression and the path
to the file whose lines are to be matched. The script writes to standard output any
line that matches the pattern. For example, suppose strings contains the following
text:

cow54

dog

cat9

Running ./grepp ‘\d{2}’ strings produces the following output:

cow54

11. Write script metricate to replace imperial measurements in a file with metric mea-
surements. The script accepts one parameter: the path to a file containing the text
to be converted. Any measurements conforming to the patterns in the first column of
the table below are converted to the forms in the second column using the specified
conversion formula:

Pattern Replacement Formula
inch or # inches or # in # cm ×2.54
mile or # miles or # mph # km or # kph ×1.60934
pound or # pounds or # lbs # kg ×0.453592
yard or # yards or # yd # m ×0.9144

The converted text is written to standard output.

The numbers may contain decimal digits (e.g., 1.75, 90.3, 0.000009). The converted
measurements must contain the exact same number of decimal digits (e.g., 50.7 miles
→ 81.6 km, 5 inches → 13 cm, 145.00001 lbs → 65.77084 kg).

Implementation hint: give gsub a pattern that captures both the overall number and
the decimal digits. Pass it a block that uses the captured results (available in $1, $2,
etc.) and a format string to produce numbers with the correct number of decimals
(e.g., "%.4f" % 0.12348 → 0.0125).

12. Write script idread that examines all the alphabetic identifiers in a source file and
determines if they are readable. We define readable as being comprised of only of words
that are present in /usr/share/dict/words. The scripts accepts one command-line
parameter: the path to a file containing the identifiers to examine. It iterates through

4

the list of alphabetic identifiers and writes them to standard output, with each followed
by a smiley if the identifier is readable and a frowney otherwise. Identifiers may consist
of multiple words, depending on the case of internal letters. For example, flowerPower
is two words, each of which must be considered separately. For example, suppose ids

contains the following text:

jolly

swick

fwerp

goober

not

Street

holiday

isGreat

isFwungy

hasNothing

isChangedALot

greetsPeopleWithASmile

sometimes5

Running ./idread ids produces the following output:

jolly :)

swick :)

fwerp :(

goober :)

not :)

Street :)

holiday :)

isGreat :)

isFwungy :(

hasNothing :(

isChangedALot :(

greetsPeopleWithASmile :(

Ignore case when determining if a word appears in the dictionary. Note that some
seemingly-legal identifiers are rejected because they contain verb conjugations not
found in the dictionary file.

Implementation hint: use scan and a block to process each identifier. In the block,
decompose the identifier into words. Holding the contents of /usr/share/dict/words
in memory is probably not a good idea. Instead, use the system command and the
grep utility to determine if a word is in the dictionary.

This problem is motivated by Landon and Objective-C, who both avoid abbreviations
in identifiers.

13. Write script geocode to replace all geo tags in a file with links to Google Maps. The
script accepts one parameter: the path to a file containing geo tags. Any instances of
geo:PLACENAME: are replaced with:

5

PLACENAME

Assume PLACENAME contains no colons. Write the results of the substitution to standard
output. For example, suppose anim contains the following text:

Pixar's in geo:Emeryville, CA:.

Disney Animation's in geo:Burbank, CA:.

Running ./geocode anim produces the following output:

Pixar's in Emeryville, CA.

Disney Animation's in Burbank, CA.

Determine the latitude and longitude using Google’s geocoding web service1. A query
is issued and its results are retrieved in the following manner:

require 'open-uri'

require 'json'

insert code to detect all tags

for each place

place = ...

params = {:address => place}

url = URI.parse("https://maps.googleapis.com/maps/api/geocode/json")

url.query = URI.encode_www_form(params)

body = JSON.parse(url.read)

sleep 1

Variable body contains a hash/dictionary built from the JSON-formatted response. Use
the lat and lng fields of the location structure of the geometry geometry structure
of the 0th entry of the results array. Round the results to three-decimal places.

The sleep command is very important. If you issue queries too quickly, Google will
block your requests.

14. Write script deadlinks to determine whether each link in a file is dead. We define dead
as not responding to an HTTP HEAD request. The script accepts one parameter: the
path to a file whose links are to be examined. It iterates through all links in the file
and writes them to standard output, with each followed by a smiley if the link is not
dead and a frowney otherwise. For example, suppose bookmarks contains the following
text:

Go to http://www.asdkfjasdklfjaasdfjasdfjk.com/ (Please don't register this domain.)

and http://www.sometimesredsometimesblue.com/

Running ./deadlinks bookmarks produces the following output:

http://www.asdkfjasdklfjaasdfjasdfjk.com/ :(

http://www.sometimesredsometimesblue.com/ :)

1https://developers.google.com/maps/documentation/geocoding/

6

https://developers.google.com/maps/documentation/geocoding/

You can assume all links start with http and end right before a quotation mark,
whitespace, or end-of-line. (This definition is less than rigorous.)

Implementation hint: you can issue a HEAD request to a web page in the following
manner:

require 'net/http'

...

url = URI.parse(url)

request = Net::HTTP.new(url.host, url.port)

response = request.request_head(url.path)

Consider the request successful if response.code is less than 400. A 404 error, for
example, means the link is dead.

To be eligible for later-week submission, you must successfully complete wrap and classify.
Additionally, the grading script must report that you met these requirements.

3 Submission

To submit your work for grading:

1. Run the grading script from your homework directory using ../specs/grade.

2. Commit and push your work to your repository.

3. Verify that your solution is on Bitbucket by viewing your repository in a web browser.

A passing grading script does not guarantee you credit. Your grade is conditioned on a few
things:

• You must meet the requirements described above. The grading script checks some of
them, but not all.

• You must successfully submit your code to your repository. Expect to have issues with
Git.

• You must not plagiarize. Write your own code. Talk about code with your classmates.
Ask questions of your instructor or TA. Do not look at others’ code. Do not ask
questions specific to your homework anywhere online but Piazza. Your instructor
employs a vast repertoire of tools to sniff out academic dishonesty, including: drones,
moles, and a piece of software called MOSS that rigorously compares your code to every
other submission. You don’t want to live in a world serviced by those who squeaked
by through questionable means. For your future self, career, and family, do your own
work.

The grading script allows you to signal your instructor when requirements are met. You
only need to send an email if you are resubmitting.

7

	Overview
	Requirements
	Submission

