
CS 330 Homework
Fun Fun: Functional Languages

1 Overview

Your responsibility in this homework is to solve problems in a functional approach using
Haskell. Your instructor finds it quite difficult to write a complete program (with I/O and
staging of data structures) in most functional languages, so this assignment will instead
focus on smaller problems. Your instructor’s hope is that you can apply the ideas seen in
functional languages to your everyday programming, whatever language that might be in.

2 Requirements

In order to complete this homework, please satisfy the following specification:

1. Write all code in a file named Funfun.hs in a directory named funfun. The case of
the file name is important; Haskell’s module system requires an initial capital letter.
A skeleton of this file with some testing code has been placed in W330.

2. Write a function everyOther that takes a list as a parameter and returns a list contain-
ing only every other element, starting with the first. For example everyOther [1..5]

→ [1, 3, 5]. (3 cases)

3. Write two functions fsts and snds that both accept a list of pairs as a parameter.
fsts returns a list of the first components in the pairs, snds returns a list of second
components. For example, fsts [(1,2), (3,4)] → [1,3]. Write these in point free
style and use map. (28 characters total)

4. Write a function bounds1Accum that accepts a list of numbers, a minimum, and a
maximum. It returns the minimal and maximal value found amongst the list elements
and the two parameters. The minimal and maximal values are returned as a pair. For
example, bounds1Accum [] 1 5 → (1, 5) and bounds1Accum [6, 9, 3] 5 10 →
(3, 10). (Hint: the base case is trivial. The recursive case tries to best the parameters
and the head.) Note that this function is tail recursive; it uses two accumulators. (2
cases)

5. Write a function bounds1 that wraps around bounds1Accum, making it easier for clients
to call. It takes a list parameter. If the list is empty, it returns Nothing. Otherwise, it
returns Just the result of calling bounds1Accum with the head of the list as the initial
accumulator values. (2 cases)

6. Write a function bounds2 that accepts a list of pairs as a parameter—pretend that
each elements is an (x, y) coordinate pair. It returns a pair of Maybes whose first

1



element is the x extrema and whose second element is the y extrema. For example,
bounds2 [(1,2), (3,4), (0,0)] → (Just (0,3), Just (0,4)). bounds2 of the
empty list is a pair of Nothings. (1 case; 54 characters total; use three of the functions
you just wrote!)

7. Write a function filtermask that accepts a function, a mask list, and a data list.
Much like filter, it returns a subset of the data list. Which elements are filtered
depends on the mask list. It applies the function to an element of the mask list
and the corresponding element in the data list, and if the function returns true, the
corresponding element in the data list is included in the returned list. For example,
suppose we want to filter out data items that are greater than the mask items. We
could do so with: filtermask (\m d -> d > m) [1, 5, 7] [5, 6, 7] → [5, 6].
(3 cases)

8. Write a function filterTrues that partially applies filtermask with a lambda func-
tion that returns true if the mask item is true. Use point free style. For example,
filterTrues [True, False, True] [1, 2, 3] → [1, 3]. (37 characters, 1 case)

9. Write a function sumTrues that accepts a mask and a data list and sums up the data
values whose corresponding mask values are true. Use filterTrues. For example,
sumTrues [True, False, True] [1, 2, 3] → 4. (48 characters, 1 case)

10. Write a function filterDiffs that partially applies filtermask with a lambda func-
tion that returns true if the mask item is different from the data item. Use point free
style. For example, filterDiffs ["a", "B", "Z"] ["A", "B", "C"]→ ["A", "C"].
(41 characters, 1 case)

11. Write a function joinDiffs that accepts a mask and a data list and concatenates
the data values that are different from the mask values, each separated by a newline.
Assemble the results with a call to foldl and a lambda concatenator. For example,
joinDiffs ["a", "B", "Z"] ["A", "B", "C"]→ "A\nC\n". (83 characters, 1 case)

12. This next few problems involve writing functions to play a game of Battleship. After
you complete these, you can test your game by executing play or playLonely.

(a) Write a type Row consisting of constructors named A through J. Write a type class
Column consisting of constructors named One through Ten. Have both derive Enum,
Ord, Show, Bounded, Eq, and Read. These two are very much like typesafe enums.
You will use data of these types to identify board positions.

(b) Write a type Address with one constructor named Address taking a Row and
Column. Have it derive Show, Read, and Eq.

(c) Write a type Cell with one constructor named Cell taking an Address and a
Bool. Have it derive Show, Read, and Eq. A cell will be used to identify the
location and sunk status of one segment of your ship. If the Bool is true, the
segment at the given address is sunk.

2



(d) Write a type Ship with one constructor named Ship taking a list of Cells. Have
it derive Show and Eq.

(e) Write a type Ships with one constructor named Ships taking a list of Ships.
Have it derive Show and Eq.

(f) Write a function toAddress that takes in a row and column, each in [0 − 9].
Construct an Address and return it. Use toEnum to index into your Row and
Column enums lists.

(g) Write a function toRowColumn that takes in an Address and returns a pair of
integers—the row and column number of that address. Use fromEnum. You could
use this function to index into a 2-D array for your board, though we don’t assign
this task.

(h) Define allAddressesA as the list of all possible board Addresses. Use a list
comprehension that uses ranges of your Row and Column types.

(i) Define allAddressesB as the list of all possible board Addresses. Use a list
comprehension that uses integral ranges and turns the integral pairs into addresses
with toAddress.

(j) Write a function targetShip that accepts a Ship and a target address as its two
parameters. If the ship has a cell with the target address, that cell is marked
sunk. An updated version of the ship is returned. If the ship is empty, the empty
Ship is returned. (1 map, 116 characters)

(k) Write a function targetShips that accepts a list of Ships and a target address
as its two parameters. It attempts to sink each ship in the ship list. It returns a
list of updated ships. If no ships are present, the empty list is returned. (1 map,
86 characters)

(l) Write a function isSunk that accepts a Ship as its parameter. If the ship is the
empty ship, return true. Otherwise, return true if all cells are marked sunk. (1
fold, 78 characters)

(m) Write a function areSunk that accepts a list of Ships as its parameter. If no ships
are present, return true. Otherwise, return true if all ships are marked sunk. (1
fold, 78 characters)

13. Zip up your directory to funfun.zip with

(cd .. && zip -r funfun.zip funfun)

This command assumes your current working directory is funfun. The *.zip file is
placed in the parent directory.

14. To test your code, run the following:

(cd .. && ~/w330/funfun/test_funfun)

3



This script only tests a few things like proper names and basic functionality. This
script does not test all requirements. You need to do your own testing too. Failure to
do so will likely result in a rejected submission. After you pass these tests, the script
will prompt you to submit and notify us of your submission.

3 Meta

The reference implementation is 44 lines of code, counting separating whitespace. That’s
really small, and is typical of coding in a functional style. However, don’t be deceived. One
spends considerably more time writing each line, at least initially.

4


	Overview
	Requirements
	Meta

