
CS 330: Homework 4
Nullaby

1 Description

Your goal in this homework is to expand your awareness of the beauty and pain that is C
programming combined with the manipulation of XML-structured data. You will do this in
the context of writing a utility to convert an XML music file into a WAV file.

2 Background

2.1 Sound

Sound is a wave of pressure that propogates through the physical world. The frequency of
the wave determines its pitch. Each note on the musical staff is associated with a particular
frequency, and to create a sound clip at the frequency, we walk along the wave modeled by
amplitude ·sin(2π · frequency · t), where t represents our position on the time axis. We capture
the magnitude of the wave at all samples t, and this sequence of samples is our digitized
sound clip; it’s what we store in the WAV file.

0 2 4 6 8 10 12
−32767

0

32767

time

pr
es

su
re

As this homework is not so much about digitizing sound, we have provided some helper
functions to map notes to frequencies and to generate a sequence of samples for a given
frequency and duration. You will use these functions (or you can write your own) to turn a
textual representation of some music into a WAV file.

Please have a look through the helper functions before reading on:

http://www.twodee.org/teaching/cs330/2012A/homework/helpers.c

As a class, we’ll walk through the WAV format. It is described in detail here:

https://ccrma.stanford.edu/courses/422/projects/WaveFormat/

1

http://www.twodee.org/teaching/cs330/2012A/homework/helpers.c
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/


2.2 XML Music

The musical notation for this homework is a simple XML format. The following example
demonstrates all its features:

<?xml version="1.0" encoding="UTF-8"?>

<song octave="4" duration="2">

<note name="C"/>

<note name="D+" duration="1"/>

<rest duration="2"/>

<repeat times="3">

<note name="B-" octave="5"/>

</repeat>

</song>

You don’t need to have any background in music to be able to complete this assignment,
though you’ll have to doggedly follow the specification of the helper methods and see how
the XML file and the helper methods fit together.

The following rules describe the XML file structure in more detail. You may assume the
XML file is well-formed, but you cannot assume the attributes to be in any particular order.

1. The root entity is song, which you may assume has a default octave and note/rest
duration specified in its attributes. Durations are of the form 1 (a whole note), 2
(half), 4 (quarter), 8 (eighth), 16 (sixteenth), or 32 (thirty-second).

2. Nested in song is a sequence of note, rest, and repeat entities.

3. All notes have a name attribute, one of A, B, C, D, E, F, G, optionally followed by
a + (sharp, raise the note a half step) or − (flat, lower the note a half step). Notes
may or may not have octave and duration attributes. If they do not, the containing
song’s attributes are used.

4. Rests may or may not have a duration attribute. If they do not, the containing song’s
duration attribute is used. Rests effectively have a frequency of 0.

5. Repeated sequences are grouped in a repeat entity. You may assume such entities
have a times attribute indicating how many times the sequence is to be repeated.
Repeated sequences do not nest.

3 Requirements

To receive full credit for this assignment, you must satisfy the following requirements:

• Create a directory named nullaby and place all of your files inside of it.

2



• Write your code in nullaby.c. No header file is specified.

• Have a main function that expects command-line arguments for the input XML file
and a path to the output WAV file. Your code must transform the music described
in the XML to the binary WAV file. No other specification is given, but please keep
your functions short, document them using Javadoc syntax (see the dirch example on
Piazza), and use meaningful names.

• Parse the XML file with libexpat. Use no global variables. Use XML SetUserData to
pass data around to your callbacks.

• Create a makefile whose default/first rule builds your executable. Add a clean rule
that deletes your executable.

• Have no memory leaks.

• The makefile and the nullaby executable must work on clark.cs.uwec.edu.

4 Advice

You do not know your memory needs ahead of time. Do not try to guess its size ahead
of time. Instead, grow your samples buffer with each new note or rest with the following
algorithm:

make new buffer big enough for song_so_far plus the new clip

copy in current samples

append new clip

song_so_far = new buffer

5 Submission

Before submitting, you are encouraged to write test code and share it with the class on
Piazza. Individuals who do so will have their names inserted into a lottery for a fabulous
prize to be awarded at the end of the semester. You are especially encouraged to share your
WAV files and XML compositions.

Please submit according to these instructions. Violators will be prosecuted.

1. One level above your nullaby directory, run the command zip -r nullaby.zip nullaby

to create a ZIP archive of your files.

2. Drop your nullaby.zip file into your submission directory on the W: drive. You may
overwrite this file as often as you like before the deadline.

3


	Description
	Background
	Sound
	XML Music

	Requirements
	Advice
	Submission

