
CS 245 Homework 3
IntSet

1 Overview

In this homework, you will create a set data structure designed specifically to hold integers. A naive
implementation might store the set as an array of booleans. If i is in the set, then the element at
index i is true. If there are many numbers and they are spread out, the backing array will waste
space.

A more efficient solution stores the set as a series of intervals. Each contiguous string of numbers
will be represented with just two ints. For example, if we add numbers 10, 8, 3, 7, 2, 9, 3, 2, 10,
11 and 5, instead of storing 8 distinct numbers, we’ll store just three intervals: 2-3, 5-5, and 7-11.

As you complete this homework, you will learn about the following topics: linked structures
and iterators.

2 Requirements

Specifications do not tell you how to solve a problem—just what pieces may be used. The classes
and methods described below will need to be thought about and pieced together using your own
good mind. You will likely need to read this section many times.

Your solution is to meet the following specification:

1. Write all code in your fork of the class Bitbucket project, in package hw3.

2. Write a class Interval that encapsulates a bounded number range. It has the following
specification:

(a) Has a constructor that accepts two int parameters for the lower and upper bound of
the interval. The bounds may be equal, but if the lower exceeds the higher, throw an
IllegalArgumentException.

(b) Has methods getLowerBound and getUpperBound, which are getters for the bounds.

(c) Has a method size that returns the number of ints in the span of the bounds, inclusive.

(d) Has a method enclose that accepts an int parameter. The interval’s bounds are ad-
justed, if necessary, to include the parameter in the interval.

(e) Has a method setLowerBound that accepts an int parameter, which is made the new
lower bound. If the parameter exceeds the upper bound, throw an IllegalArgumentException.

(f) Has a method setUpperBound that accepts an int parameter, which is made the new up-
per bound. If the parameter is less than the lower bound, throw an IllegalArgumentException.

(g) Has a method contains that accepts an int parameter. If the parameter falls within
the interval’s bounds, inclusive, return true. Otherwise, return false.

(h) Has a String method that returns a textual representation of this interval. If the
interval contains just one number, return that number as a String. Otherwise, return
the hyphen-separated bounds. For example, new Interval(101, 101).toString() →
“101” and new Interval(45, 57).toString() → “45-57”.

1



3. Write a class IntSet that encapsulates a set of integers. It stores the integers using a sequence
of Intervals. No part of the public specification requires that you use a linked structure, but
this will be checked by a human grader. Please use a doubly-linked Node class, and store both
dummy head and tail nodes. Do not use any builtin List class. IntSet has the following
specification:

(a) Has a default constructor that initializes the set to contain no integers.

(b) Has a method isEmpty that returns a boolean indicating the emptiness of the set.

(c) Has a method size that returns as an int the number of integers in the set.

(d) Has a method getIntervalCount that returns as an int the number of intervals used
to hold the numbers added to the set.

(e) Has a method getInterval that accepts an int parameter i and returns the ith Interval
in the set.

(f) Has a method contains that accepts an int parameter. It returns true if the parameter
is in the set and false otherwise.

(g) Has a method add that accepts an int parameter. It adds the parameter to the set.
What is done to add the new number depends on the existing intervals:

i. If some interval already contains the int, nothing is done. For example, adding 3
to set 2-3,6 yields 2-3,6.

ii. If the int is adjacent to just one existing interval, then the interval is adjusted to
include the new number. For example, adding 8 to 9-20,25-29 yields 8-20,25-29.

iii. If the int falls between two intervals, the two intervals are coalesced into one. For
example, adding 5 to 1-4,6-7 yields 1-7.

iv. Otherwise, a new interval is formed and inserted between any existing intervals so
that intervals are in sorted order. For example, adding 6 to 1,9-15 yields 1,6,9-15.

(h) Has a method remove that accepts an int parameter. It removes the parameter from
the set. What is done to remove the number depends on the existing intervals:

i. If no interval contains the int, a NoSuchElementException is thrown.

ii. If the int is the sole member of its interval, the interval is removed. For example,
removing 5 from 1,5,7-9 yields 1,7-9.

iii. If the int is the bounds of its interval, the interval is adjusted to not include the
number. For example, removing 3 from 1-3 yields 1-2.

iv. Otherwise, the number lies within an interval, and the interval must be broken in
two. For example, remove 7 from 2,5-10 yields 2,5-6,8-10.

(i) Has a toString method that returns a textual representation of the set. If the set
is empty, “{}” is returned. Otherwise, a comma-separated concatenation of the set’s
intervals is returned. For example, if we add numbers 1, 5, 8, 6, 7 to a set, its String

representation is “1,5-8”.

(j) Has a method getIterator that returns a new IntSet.Iterator that may be used to
traverse the set.

4. Write an inner class of IntSet named Iterator with the following specification:

2



(a) Is not static, i.e., it can access instance variables of IntSet. This is typical of iterators,
which are closely tied to their containing instances.

(b) Has a default constructor, which sets up the iterator to point to the first int in the set.
(Hint: you will likely need to track two instance variables to support iteration: one for
the current interval node you are in and one for the number within the interval you are
visiting.)

(c) Has a method hasNext that returns true if there’s an next int to visit and false other-
wise.

(d) Has a method next that returns the next visited int.

5. Write a class Main with the following specification:

(a) Has a main method. What it does is not specified, but you are suggested to use it to test
your code. Relying exclusively on the SpecChecker to test things will rob your brain of
some neurons that are in your best interest to grow.

3 Submission

This homework is a regular assignment and is graded by hand and with help from the SpecChecker.
To submit your work for grading:

1. Put the SpecChecker for this homework in your Build Path.

2. Run the SpecChecker as a Java Application (not a JUnit Test) and fix problems until all tests
pass.

3. Commit and push your work to your repository. If you are resubmitting an earlier assignment,
email me. The time of your email will determine the submission week.

The SpecChecker cannot check everything. Your assignment is also expected to fully meet the
requirements above and the following:

• Variable names should be meaningful and accurate.

• Non-obvious parts of your code should be commented.

• Code should be cleanly formatted and indented.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. (If you find violators of this rule, please let
me know.)

• Work must be submitted according to course policies on deadlines. To be eligible for later-
week submission, you must have at minimum the skeletons for all specified classes and methods
in your repository by the homework deadline—without compilation errors (no red in Eclipse).

3


