
CS 245 Preassignment 2
Geocode

1 Overview

Location-aware apps are today’s most practical and personalized technology. Searching for a coffee
shop? A smart search engine will favor local results. Lost your phone or friends? There’s likely
a Find My — app that can help. Key to making many of these apps meaningful to human users
is the process of geocoding, which turns an address into a latitude/longitude pair, and its inverse
operation reverse geocoding, which turns a latitude/longitude pair into a place name or address.

In this preassignment, you will leverage Google’s web-based services to reverse geocode lati-
tude/longitude pairs. GPS sensors in our mobile devices are a cheap source of personalized loca-
tion data, but in order for a mobile device to use Google’s services, it must have a reliable network
connection. Many apps buffer themselves against communication failures by using a cache, a local
mirror of remote data. For each latitude/longitude that is reverse geocoded, you will cache the
results so that future lookups will not need an Internet connection.

In completing this preassignment, you will learn about hashing, web services, caching, and the
use of external libraries.

2 Google’s Geocoding API

A general rule of development is that you shouldn’t automate what you haven’t done manu-
ally. Therefore, before you write any code, look at Google’s geocoding web service by visiting
http://maps.googleapis.com/maps/api/geocode/json?latlng=%f,%f&sensor=false, replacing
the two %fs with a decimal latitude and longitude. (You can get the latitude/longitude in de-
grees/minutes form from Google Maps by left-clicking on the map when sufficiently zoomed in and
inspecting the popup. There are many online converters that will translate degrees/minutes/seconds
into decimal form, and it’s easy enough to write your own.)

Query 44.79711/-91.49965. Results are returned to you in a format called JavaScript Object No-
tation (JSON), which defines a portable string representation for arrays, hashes, numbers, booleans,
strings, and null. Hashes are notated as {"key1" : value1, "key2" : value2, ...} and ar-
rays as [value1, value2, ...]. For our purposes, we only care about the value with key results,
which is an array. Of this array, we only care about the first element, which is a hash. Of this hash,
we only care about the string with key formatted address, which is “101 Roosevelt Avenue, Eau
Claire, WI 54701, USA.”

We could parse this string ourselves, but for this preassignment you will use Jackson (https:
//github.com/FasterXML/jackson), a library that can rip apart JSON. Using an instance of its
ObjectMapper class, you can fetch a hash from a URL in just one line:

Map<String, Object> response = mapper.readValue(new URL(url), Map.class);

We can only say that the hash maps Strings to vanilla Objects because each value may be a
different type. One value may be an ArrayList while another is a Boolean. Object is their
common superclass. To get the value out for a key, we can use Map.get and downcast the returned
Object to the appropriate type.

1

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson


The Jackson library is distributed as three JAR files. They have been downloaded and added
to your specs directory. Right-click on each and add them to Eclipse’s build path.

3 Requirements

Specifications do not tell you how to solve a problem—just what pieces may be used. The classes
and methods described below will need to be thought about and pieced together using your own
good mind. You will likely need to read this section many times.

Your solution is to meet the following specification:

1. Write all code in your fork of the class Bitbucket project, in package pre2.

2. Write a class LatLon with the following specification:

(a) Encapsulates a latitude/longitude pair.

(b) Has a constructor accepting a latitude and longitude as double parameters.

(c) Has getters for both the latitude and longitude.

(d) Has a toString method that returns the latitude and longitude shown to five dig-
its and separated by a comma. For example, new LatLon(47.5,33.12345123) →
“47.50000,33.12345”. Use String.format to control the number of decimal places.

(e) Has a hashCode method that returns as the hashcode of this coordinate pair the hashcode
of its String representation. This method is used by a hashtable to find the index of a
reverse geocoded location.

(f) Has an equals method that returns a boolean indicating whether this coordinate pair is
equal to some other Object. If the two references are identical, return true. If the other
reference is null or not a LatLon return false. Otherwise, if the String representations of
the two coordinate pairs are equal, return true. If they differ, return false. This method
is needed because multiple locations might have the same hashcode. The hashtable finds
which is correct by comparing the colliding keys for full equality.

3. Write an interface Fetcher with the following specification:

(a) Has two generic parameters: K for the key type and V for the value type.

(b) Imposes method fetch on its implementers, which fetches a value for a given key. It
accepts a key as a parameter and returns a value.

4. Write a class GeocodeFetcher with the following specification:

(a) Conforms to the Fetcher interface.

(b) Has LatLon as its key type and String as its value type.

(c) Implements fetch such that, given a LatLon, it reverse geocodes the location and returns
the name of the location. Use Google’s web-based Geocode API to retrieve a list of
names, parse the JSON result using Jackson, and return the formatted address of the
first element in the results array.

2



5. Write a class Cache, which has general utility. You will write it so that it can be used for any
caching purpose, not just geocoding. This is made possible by using generic parameters and
the Fetcher interface. It has the following specification:

(a) Maintains an association between keys and values. The first time a value for a key is
looked up, it is fetched, but the result is stored. The second and all subsequent times
the value for the key is looked up, the value is retrieved directly from the cache and the
fetcher is not invoked.

(b) Has two generic parameters: K for the key type and V for the value type.

(c) Has a constructor accepting a Fetcher parameter. The Fetcher will be used when a
value is looked up for the first time.

(d) Has a method get that accepts a key parameter and returns a value. It first checks if
the key-value pair is already cached. If so, the value is returned immediately. Otherwise,
the fetcher is used to fetch the value, the pair is cached, and then the value is returned.

(e) Has a method has that accepts a key parameter. It returns true if the key and its values
are cached and false otherwise.

6. Write a class Main with the following specification:

(a) Has a main method. What it does is not specified, but you are suggested to use it to test
your code. Relying exclusively on the SpecChecker to test things will rob your brain of
some neurons that are in your best interest to grow.

4 Submission

This homework is a preassignment and is graded with help from the SpecChecker. To submit your
work for grading:

1. Put the SpecChecker for this homework in your Build Path.

2. Run the SpecChecker as a Java Application (not a JUnit Test) and fix problems until all tests
pass.

3. Commit and push your work to your repository. If you are resubmitting an earlier assignment,
email me. The time of your email will determine the submission week.

The SpecChecker cannot check everything. Your assignment is also expected to fully meet the
requirements above and the following:

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. (If you find violators of this rule, please let
me know.)

• Work must be submitted according to course policies on deadlines. To be eligible for later-
week submission, you must have at minimum the skeletons for all specified classes and methods
without compilation errors (no red!) in your repository by the homework deadline.

3


