
CS 245 Homework 1
Duopoly

1 Overview

Summer visits to see Grandma always meant games. Dominoes, Chinese checkers, and seventeen
different card games. She’d make her move, then sit back in her chair and trashtalk while I planned
mine. Grandma was beatable before her morning coffee. But afterward, you’d better watch out! In
this homework, you will write a framework for building two-player turn-based games like the ones
Grandma loved.

Two-player turn-based games all follow a similar structure. Player 1 moves, player 2 moves,
player 1 moves, player 2 moves, etc., until one player wins or the game comes to a draw. The first
classes you write will codify this abstract notion of all such games.

You will also write two concrete games, one of your choosing and a two-player text-based
rendition of the Tiger Toys game Lights Out. In Lights Out you have an n× n board of lights:

01234

0_____

1__x__

2_xxx_

3_____

4_xxx_

Here, the board is 5 × 5 and ‘x’ means a light is on. If player 1 presses on column 2, row 4, that
light and its left, right, up, and down (which it doesn’t have, being in the bottom row) neighbors
toggle their state:

01234

0_____

1__x__

2_xxx_

3__x__

4_____

If player 2 presses on column 2, row 2, that light and its left, right, up, and down neighbors toggle
their state:

01234

0_____

1_____

2_____

3_____

4_____

Player 1 doesn’t get another turn, because player 2 just won the game by turning all the lights off.
You are encouraged to check out one of the various online implementations to get a feel for the
rules and strategy.

As you complete this homework, you will learn about the following topics: inheritance, abstract
classes, and polymorphism.

1



2 Requirements

Specifications do not tell you how to solve a problem—just what pieces may be used. The classes
and methods described below will need to be thought about and pieced together using your own
good mind. You will likely need to read this section many times.

Your solution is to meet the following specification:

1. Write all code in your fork of the class Bitbucket project, in package hw1.

2. Write an enum GameState that represents the current status of a game. It has the following
specification:

(a) Has values WON, DRAW, and IN PROGRESS.

3. Write an abstract class Duopoly that encapsulates the notion of a two-player turned-based
game. It has the following specification:

(a) Has a constructor taking two DuopolyPlayer parameters. The first parameter is player
1 and the second parameter is player 2.

(b) Has a method play that administers a game between the two players. The game is
initially considered to be in progress. Player 1 takes a move. If the game isn’t over,
player 2 takes a move. The process repeats until the game is won or over in a draw. The
textual user interface must communicate the game board before and after each move, as
demonstrated through the following pseudocode:

show game

player move

show game

If, when the game is over, a player has won, announce the winner to System.out.
Otherwise, declare a draw.

4. Write an abstract class DuopolyPlayer that encapsulates the notion of a player in a two-
player turned-based game. It has the following specification:

(a) Has a constructor taking a String parameter for the name of the player.

(b) Has a getter for the player’s name.

(c) Has an abstract method move that accepts a Duopoly game parameter for the game
in which the player is to take a turn. This method returns the state of the game
after the player’s move as a GameState reference. This method is abstract because
DuopolyPlayers aren’t associated with any particular game and the concept of making
a move in an undefined game is illogical. Instead, subclasses will override this method
according to the rules of a real game.

5. Write a class LightsOut that encapsulates the board of an n× n Lights Out game. No more
than one instance variable is needed to accomplish this task. It has the following specification:

(a) Is a subclass of Duopoly.

2



(b) Has a constructor that accepts two LightsOutPlayer parameters and an int for the
size of the game board. This constructor creates a n × n board on which all lights are
initially off. You may assume n < 10.

(c) Has a method randomize that randomly enables the board’s lights. It accepts a long

parameter, which you are to use as the seed for a Random generator. Visit each light
on the board, starting with row 0, and generate a random boolean determining the
light’s status. The seed is necessary to make “repeatable” and therefore “gradeable”
randomness.

(d) Has a method press that accepts two int parameters, one for the column and one for
the row of a player’s move. It toggles the state of the light at the given location and its
four neighbors. Not all neighbors may be exist. Only toggle those that do. If the row
and column are not on the board, throw an IllegalArgumentException.

(e) Has a method isDark that returns true if all lights are off and false otherwise.

(f) Has a method toString that returns a visual display of the board of the following form:

012345

0_____

1x__x_

2____x

3___x_

4___x_

The numbers specify the row and column addresses of each light. An underscore means
the light is off. An ‘x’ means the light is on. Each row is followed by a newline. (You
can use string concatenation to assemble the board. A more industrial grade solution
might use StringWriter and PrintWriter.)

6. Write a class LightsOutPlayer. No instance variables are needed to accomplish this task. It
has the following specification:

(a) Is a subclass of DuopolyPlayer.

(b) Has a constructor that accepts as a String parameter the name of the player.

(c) Overrides move such that the player presses one light of the game. Prompt the user and
read from System.in the column and row that is to be pressed. (The grader hijacks
System.in to accomplish its task of checking your work. A consequence of this hijacking
is that you will need to construct a Scanner or whatever class you use to read System.in

each time this method is called.) If, after the press, all the lights of the game are off,
return WON. Otherwise, return IN PROGRESS. This method must take a parameter of type
Duopoly game in order to override its superclass. You may assume the runtime type is
LightsOut.

7. Write a class Main with the following specification:

(a) Has a main method. What it does is not specified, but you are suggested to use it to test
your code. Relying exclusively on the SpecChecker to test things will rob your brain of
some neurons that are in your best interest to grow.

3



8. Write a second two-player turned-based game of your choosing, which may be as simple or
as complicated as you like. Share your game and player classes on Piazza, tagged duopoly.

3 Submission

This homework is a regular assignment and is graded by hand and with help from the SpecChecker.
To submit your work for grading:

1. Put the SpecChecker for this homework in your Build Path.

2. Run the SpecChecker as a Java Application (not a JUnit Test) and fix problems until all tests
pass.

3. Commit and push your work to your repository. If you are resubmitting an earlier assignment,
email me. The time of your email will determine the submission week.

The SpecChecker cannot check everything. Your assignment is also expected to fully meet the
requirements above and the following:

• Variable names should be meaningful and accurate.

• Non-obvious parts of your code should be commented.

• Code should be cleanly formatted and indented.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. (If you find violators of this rule, please let
me know.)

• Work must be submitted according to course policies on deadlines. To be eligible for later-
week submission, you must have at minimum the skeletons for all specified classes and methods
in your repository by the homework deadline.

4


	Overview
	Requirements
	Submission

