
CS 245 Homework 1
Treemap Part 2

due before October 11

1 Overview

In this two-part homework, you will explore the concepts of inheritance and recursion by construct-
ing a treemap, which can be used to show the relative sizes of files in a directory.

What is a treemap? Consider the following tree structure, which consists of a parent with just
three immediate children:

9

1

2

6

(a) Sizes

FertileTree tree = new FertileTree();

tree.addChild(new SterileTree(1));

tree.addChild(new SterileTree(2));

tree.addChild(new SterileTree(6));

(b) Code (c) Treemap

The first child has size 1, and it is given 1
9 of the treemap to plot itself into. The second has size

2; it is given 2
9 . The last size 6; it is given 2

3 . Each sterile tree, a tree without children, is depicted
in the treemap as a solid rectangle of color sized according to its proportion within its parent.

What happens when child trees themselves have children? Suppose the third child were itself
a tree with four children, of sizes 1, 1, 1, and 3. Instead of the third child being plotted as a solid
block of color, it is partitioned into four cells, the sizes of which reflect the relative sizes of its
children:

9

1

2

6

1

1

1

3

(a) Sizes

FertileTree child3 = new FertileTree();

child3.addChild(new SterileTree(1));

child3.addChild(new SterileTree(1));

child3.addChild(new SterileTree(1));

child3.addChild(new SterileTree(3));

FertileTree tree = new FertileTree();

tree.addChild(new SterileTree(1));

tree.addChild(new SterileTree(2));

tree.addChild(child3);

(b) Code (c) Treemap

Note that the third child consumes the same amount of space within its parent as before. Its size
has not changed—it is still 6. It just happens to be subdivided amongst its children. Note also
that the subdivision happened vertically instead of horizontally. This switch of orientation lets us
see that we have gone down a level in the tree. Without the switch, we might think the root of the
tree had six children.

Let’s add another level. The first child of the third child formerly had size 1. Let’s replace that
with a tree that has two children of size 5, a tree of size 10. This change will change the parent
sizes as well, causing a change in subdivisions all the way up the tree:

1



17

1

2

15

10

5

5

1

1

3

(a) Sizes

FertileTree grandkid1 = new FertileTree();

grandkid1.addChild(new SterileTree(5));

grandkid1.addChild(new SterileTree(5));

FertileTree kid3 = new FertileTree();

kid3.addChild(grandkid1);

kid3.addChild(new SterileTree(1));

kid3.addChild(new SterileTree(1));

kid3.addChild(new SterileTree(3));

FertileTree tree = new FertileTree();

tree.addChild(new SterileTree(1));

tree.addChild(new SterileTree(2));

tree.addChild(kid3);

(b) Code (c) Treemap

The upper right rectangle was subdivided evenly in two, reflecting the new children we added.
These children are bigger than any existing sterile tree, so these are the biggest swaths of color in
the treemap. We also switched subdivision orientation again since we descended a level in tree.

To show a treemap of a file hierarchy, we can treat plain files as sterile trees, whose sizes are
their lengths in bytes. Directories are fertile trees, whose sizes are the sums of their children’s sizes.
One can inspect a treemap of a directory to see how disk space is being utilized:

Figure 4: Treemap of /home/johnch/checkouts/universe

Static treemaps of this complexity are more art than information. Many programs exist that let
users interact with the treemap dynamically and see what the files are. We’ll stick with art in this
assignment.

2 Requirements

1. Write all code in package hw1.

2. Retain your RandomPlus and Utilities classes from part 1. Ensure that they pass the
SpecChecker from part 1.

3. Write a class Tree that encapsulates the abstract notion of a thing that has a size and children
that are also trees. It has the following specification:

(a) It is abstract.

2



(b) It has a public method getSize that is abstract and returns a long. At the abstract
level, you don’t have enough information to implement this method. Subclasses will
implement it to return the tree’s size.

(c) It has a public method plot that is used to plot the tree into an image as a treemap.
This method is abstract and accepts the following parameters: a BufferedImage to plot
into, a Rectangle specifying the bounds of the image that this tree will be plotted into,
and a boolean stating whether this tree should plot its children horizontally (if false,
they are plotted vertically). At the abstract level, we don’t have enough information to
implement this method. How we plot this tree depends on whether it has children or
not. Also, as this method takes a number of parameters that we don’t expect the general
public to pass sane values for, hide this method to all but its subclasses by making it
protected.

(d) It has a public method plot that accepts a BufferedImage as its sole parameter.
The general public calls this version of plot, which triggers the protected helper and
passes in reasonable parameters. Use the entire image’s bounds and start by plotting
the children horizontally.

4. Write a class SterileTree that encapsulates a tree without children. You can think of it
as a plain old file, though it can represent other things—like dead end roads, TV shows
without spinoffs, quests that don’t have subquests, and other base cases. It has the following
specification:

(a) It is a subclass of Tree.

(b) It has a constructor taking a long size as its sole parameter.

(c) It implements the getSize method to return its size as given at construction time.

(d) It implements the many-parameter version of plot to plot a solid random color in the
bounds (inclusive) of the image. (Who could provide a random color?)

5. Write a class FertileTree that encapsulates a tree with child trees. You can think of it as
a directory, though it can represent other things—like roads that lead to other roads, TV
shows with spinoffs, islands that have lakes, and other general cases. It has a size that is the
sum of the sizes of its children. It has the following specification:

(a) It is a subclass of Tree.

(b) It has an addChild method that accepts a Tree parameter. It appends the parameter
tree to its list of children.

(c) It implements the getSize method to return its size as the sum of the sizes of its children.

(d) It implements the many-parameter version of plot by dividing up the bounds it is
given to its children. If a tree has two children, the first of size 6 and the second of
size 3, and plotting is horizontal, then the left 2/3 of the bounds is plotted into by
the first child and the right 1/3 is plotted into by the second child. If the plotting is
vertical, then the first plots into the top 2/3 and the second plots into the bottom 1/3.
Children should be plotted in the layout opposite to this one. That is, if this level was
distributed horizontally, the next level should be distributed vertically, and vice versa.
Your proportionalize and distribute methods simplify this task.

3



6. Write a class Main that has the following specification:

(a) It may have a main method that you can use to test your code. This is not specified.

(b) It has a static method buildFileTree that accepts a File parameter. If the file is not
a directory, it returns a SterileTree whose size is the file’s size. If it’s a directory, it
returns a FertileTree whose children are trees starting at each item contained in this
directory. (To facilitate comparison, please sort the results of your listFiles call using
Arrays.sort.) Think recursively. The reference solution is only 10 lines of code.

3 Submission

This homework is part of a regular assignment and is graded by hand and with help from the
SpecChecker. Your assignment is expected to fully meet the requirements above and the following:

1. Variable names should be meaningful and accurate.

2. Non-obvious parts of your code should be commented.

3. Code should be cleanly formatted and indented.

Your work will also be inspected for plagiarism. Please do your own work. Talk about code
with your classmates. Ask questions of your instructor or TA. Do not look at others’ code. Do not
ask questions specific to your homework anywhere online but Piazza. (If you find violators of this
rule, please let me know.) Write your own code.

Put the SpecChecker in your Build Path. Run it as a Java Application (not a JUnit Test) and
fix problems until all tests pass. Upload the resulting ZIP file to the W drive.

4 Files

• http://www.twodee.org/teaching/cs245/2013C/homework/treemap/speccheck_hw1-2.jar

4

http://www.twodee.org/teaching/cs245/2013C/homework/treemap/speccheck_hw1-2.jar

	Overview
	Requirements
	Submission
	Files

