
CS 245 Homework 2
Flood Fill

due before November 18

1 Overview

In this homework, you will explore the stack abstract data type and a couple of floodfilling algo-
rithms, which might be used to implement a image editor’s paint bucket/fill tool.

The essential task of floodfilling is: 1) the user selects a fill color, 2) the user clicks on a pixel
in an image, and 3) the image editor colors the clicked-upon pixel and all its like-colored neighbors
with the selected fill color. Please watch http://youtu.be/PujcpcI9Nig to see a demonstration.

This operation may be implemented recursively, as described in this pseudocode:

floodfill x y colorToMatch colorToFill image =

if colorToMatch is the same as colorToFill

we’re done

if (x, y) is valid pixel and image[x, y] is colorToMatch

image[x, y] = colorToFill

floodfill right neighbor

floodfill left neighbor

floodfill bottom neighbor

floodfill top neighbor

A recursive solution suffers from a terrible disease—StackOverflowExceptionitis—making it un-
suited for coloring large swaths of pixels. The number of recursive calls grows exponentially and
quickly exhausts memory allocated for the call stack. To avoid this problem, one can use an iterative
algorithm instead.

The iterative algorithm makes no recursive calls but instead explicitly manages its own stack of
floodfilling seed points. This algorithm, while better able to handle larger regions of filled pixels, is
a bit more complex. The general idea is: 1) work down from the seedpoint until we hit the edge of
the like-colored region, 2) work our way back up to the top of the like-colored region, coloring each
pixel, and 3) as we do so, throw just one seedpoint from each like-colored vertical span to the left
and right into a stack. The top of the stack becomes the next seedpoint and the process continues
until the stack is totally empty. The algorithm is expressed by the following pseudocode:

floodfill x y colorToMatch colorToFill image =

if colorToMatch is the same as colorToFill

we’re done

make a stack for seedpoints

push (x, y) onto seedpoints stack

while seedpoints stack is not empty

point = pop seedpoints stack

lower point as long as point.y is valid and image[point] is colorToMatch

1

http://youtu.be/PujcpcI9Nig


leftScanlineAlreadyPushed = false

rightScanlineAlreadyPushed = false

while point.y is valid and image[point] is colorToMatch

image[point] = colorToFill

if there’s a pixel to the left

-- see if there’s a vertical span to the left which

-- we need to add a seedpoint for

if not leftScanlineAlreadyPushed and

left neighbor is colorToMatch

push left neighbor onto seedpoints stack

leftScanlineAlreadyPushed = true

-- see if the vertical span to the left has ended

else if leftScanlineAlreadyPushed and

left neighbor is not colorToMatch

leftScanlineAlreadyPushed = false

if there’s a pixel to the right

-- see if there’s a vertical span to the right which

-- we need to add a seedpoint for

if not rightScanlineAlreadyPushed and

right neighbor is colorToMatch

push right neighbor onto seedpoints stack

rightScanlineAlreadyPushed = true

-- see if the vertical span to the right has ended

else if rightScanlineAlreadyPushed and

right neighbor is not colorToMatch

rightScanlineAlreadyPushed = false

raise point 1 pixel

2 Requirements

1. Write all code in package hw2.

2. Write a class ImageUtilities that has the following:

(a) A static method floodFillRecursive that accepts two int parameters representing
the seedpoint at which floodfilling is to start, a Color identifying the region to be filled,
the Color that the region should be filled with instead, and the BufferedImage contain-
ing the pixels. In your implementation of this method, follow the recursive algorithm
described above.

2



(b) A static method floodFillIterative that accepts the sam parameters as floodFillRecursive.
In your implementation of this method, follow the iterative algorithm described above.

3. Write a class ImageEditor that has the following:

(a) JFrame as its superclass.

(b) A constructor that makes the frame appear and makes the application quit when the
frame is closed.

(c) A method setImage that accepts a BufferedImage parameter. The window is resized
to match the size of the image and the image is drawn on the frame’s canvas. (Probably
you will want to create a subclass of JPanel to support this. This is an unspecified
implementation detail.) When the user clicks on the image, the image is floodfilled
starting at the clicked-upon pixel with some color of your choosing. Anytime you alter
the image, you will need to issue a call to repaint to force the window to redraw.

(d) At least two extra user interface features of your choosing. Some suggestions include:
a menu bar and file menu that pops up an open dialog to load an image, the ability
to draw shapes with the mouse or other input device, a mechanism for selecting the fill
color, or a save dialog. You must indicate what features you implemented by posting a
screenshot for each in a public Piazza post.

In the demo video linked above, you see the progression of the floodfilling operation. In order to
show this progression, I temporarily sent my JPanel object to my floodfilling routines and forced
an immediate repaint after I changed the color of a pixel with the following code:

panel.paintImmediately(0, 0, panel.getWidth(), panel.getHeight());

Thread.sleep(10); // throws an exception that you can ignore

3 Submission

This homework is part of a regular assignment and is graded by hand and with help from the
SpecChecker. Your assignment is expected to fully meet the requirements above and the following:

1. Variable names should be meaningful and accurate.

2. Non-obvious parts of your code should be commented.

3. Code should be cleanly formatted and indented.

Your work will also be inspected for plagiarism. Please do your own work. Talk about code
with your classmates. Ask questions of your instructor or TA. Do not look at others’ code. Do not
ask questions specific to your homework anywhere online but Piazza. (If you find violators of this
rule, please let me know.) Write your own code.

Put the SpecChecker in your Build Path. Run it as a Java Application (not a JUnit Test) and
fix problems until all tests pass. Upload the resulting ZIP file to the W drive.

4 Files

• http://www.twodee.org/teaching/cs245/2013C/homework/floodfill/speccheck_hw2.jar

3

http://www.twodee.org/teaching/cs245/2013C/homework/floodfill/speccheck_hw2.jar

	Overview
	Requirements
	Submission
	Files

