
CS 145 Homework 4
TwixPix

1 Overview

Your objective in this homework is to acquaint yourself with conditional statements and loops,
which enable you to write code that switches paths or repeats sequences. You will do this in the
context of writing methods that might be used in slideshow software to transition between images.

This homework involves some math. Thinking about math by hacking away at the computer
usually leads to frustration. You are strongly encouraged to draw pictures on paper and develop
an intuition about the problems.

Each transition effect is described in some detail below and a visual demonstration is available
at http://youtu.be/048HBqwUfLA.

2 Requirements

Complete the two classes described below. Place all classes in package hw4. Make all methods
static.

2.1 TwixPix

Write a class TwixPix that defines several methods for transitioning from one image to another.
You are encouraged to write one effect at a time, testing with Main before moving on to the next.

1. Define static, final, and int constants ROLL UP, WIPE LEFT, CROSSFADE, DISSOLVE, CLOCK,
and BOX OUT. These will be used by the generic transition method, described later, to
identify which effect to apply.

2. Write the following effect methods. All accept two BufferedImages and a double proportion
in [0, 1]. The first BufferedImage is the image we are transitioning from, and the second
is the image we are transitioning to. All return a new BufferedImage, which is a mix of
the two parameter images. You must visit each pixel of this transition image and assign an
appropriate color.

(a) Write a method dissolve. It blends the corresponding pixels of the from and to images
according to the proportion. When the proportion is 0.5, 50% of a pixel’s “from color”
is combined with 50% of the pixel’s “to color.” When the proportion is 0.75, 75% of the
to color is combined with 25% of the from color.

There’s no builtin method for mixing colors. We recommend the following approach:

i. Extract two corresponding colors from the BufferedImages using the getRGB method.
The colors will be ints, which are not immediately useful.

ii. Convert the colors into Color objects using new Color(anInt). Color objects allow
you to pull out the channel intensities separately.

iii. Use the Color’s getRed, getGreen, and getBlue methods and mix the three chan-
nels separately.

1

http://youtu.be/048HBqwUfLA


iv. Construct a new Color using the three mixed intensities: new Color(red, green,

blue).

v. Use Color.getRGB and BufferdImage.setRGB to assign the mixed color to your
transition image.

(b) Write a method crossfade. At proportions less than 0.5, the transition image is a mix
of the from image and the color black. At proportions greater than or equal to 0.5, the
transition image is a mix of the to image and the color black. The closer the proportion
is to 0.5, the blacker the transition image. The closer the proportion is to 0 or 1, the
more the transition image looks like the parameter images.

Fading to or from black can be accomplished by determining the proportion’s distance
from 0.5. This distance will be in [0, 0.5]. Multiply it by 2 to get a weight in [0, 1].
Convert the pixel you wish to fade into a Color object, weight each channel separately,
and construct a new color as described in dissolve.

(c) Write a method boxOut. At a proportion of 0.5, the to image is revealed in a rectangular
box that is 50% of the width and height of the images. At 0, only the from image is
visible. At 1, only the to image is visible.

(d) Write a method wipeLeft. At a proportion of 0.5, the left half of the from image is
shown and the right half of the to image is shown. At a proportion of 0.75, the right
three-quarters of the to image is shown and the left one-quarter of the from image is
shown. No colors are mixed in this effect.

(e) Write a method rollUp. This effect makes the to image appear to push the from image
out the top of the view. At a proportion of 0.5, the bottom half of the from image is
shown in the top half of transition image, and the top half of to image is shown in the
bottom half of the transition image. At a proportion of 0.75, the top three-quarters of
the from image is shown in the bottom three-quarters of the transition image, and the
bottom one-quarter of the to image is shown in the top one-quarter of the transition
image.

(f) Write a method clock. This effect reveals the to image through a radial sweep of a
clock’s hand. At a proportion of 0.25, the first quadrant of the to image appears in the
first quadrant of the transition image. At proportion 0.5, quadrants 1 and 4 are revealed.
At proportion 0.75, quadrants 1, 3, and 4 are revealed. To determine whether a pixel in
the transition image should come from the from or to image, use the following process:

i. Determine a pixel’s x- and y-distances from the center of the image by subtracting
off the coordinates of the middle pixel. Call these distances ∆x and ∆y. These
two distances form the sides of a right triangle whose hypotenuse stretches from the
center of the image to the pixel.

ii. Calculate the central angle θ of the right triangle. First we observe that the tangent
relates these two side lengths:

tan θ =
∆y

∆x
Now we solve for θ:

θ = tan−1 ∆y

∆x
Java provides an inverse tangent method in Math.atan2. This method yields radians
in [−π, π]. Figure 1a shows how the radian values change across the image.

2



-π/2
-π/4

π/2

π/4
π/2

3π/4

π

-3π/4

(a) Math.atan2

0
π/4

π/2

3π/4
π

5π/4

3π/2

-π/4

(b) + Math.PI / 2

0
π/4

π/2

3π/4
π

5π/4

3π/2

7π/4

(c) Moving to [0, 2π]

0
0.125

0.25

0.375
0.5

0.625

0.75

0.875

(d) Divide by 2π

Figure 1: Converting the result of Math.atan2 to a more useful result can be accomplished with a
little arithmetic manipulation.

iii. The result of atan2 is a little awkward to work with. It’d be really nice if we could
convert these radians into numbers that correspond to a real clock, with 0 radians
at 12 o’clock. Let’s start by adding π

2 to the radians, yielding the values shown in
figure 1b.

iv. The radians values are looking mostly nice, but there’s a discontinuity in quadrant
2. The radians dip below 0, which will make determining whether a pixel is before or
after the sweeping hand of the clock more complicated. We can fix this by checking
if the radians are negative. If so, add 2π to make an equivalent but positive angle.
The new radian values are shown in figure 1d.

v. Finally, we can divide the radians by 2π to get a value in [0, 1]. Let’s call this
the normalized angle. If a pixel’s normalized angle is greater than the proportion,
the hand of the clock has not yet reached it and the from image’s pixel is shown.
Otherwise, the hand has already swept by and the to image’s pixel is shown.

3. Write a method transition that accepts a BufferedImage from image, a BufferedImage

to image, a double proportion in [0, 1], and an int transition type. The transition type
will be one of the constants you defined earlier. This method returns the transition image
produced by the effect identified by the type parameter. Since the actual generation of the
transmission image is done by the methods described above, this method should do little but
call the appropriate helper. Compare against the constants by name, not literal value.

2.2 Main

Write a class Main. It has a main method, which you are encouraged to use to test your code.
Nothing in particular is required of it, but it must exist.

Your instructor has provided a graphical user interface (GUI) that allows you to interactively
transition between images with a slider. The SplittinImage class relies heavily on your TwixPix

class. To test, write enough of each specific effect method to allow the code to compile, and write
the transition method in full. Then in main construct a SplittinImage with two images of the
same size:

BufferedImage pre = ImageIO.read(new File("path/to/pre.jpg"));

BufferedImage post = ImageIO.read(new File("path/to/post.jpg"));

new SplittinImage(pre, post, TwixPix.CLOCK);

3



The SplittinImage class may be downloaded from http://www.twodee.org/teaching/cs145x/

homework/hw4/SplittinImage.java.

3 Submission

To submit your work for grading:

1. Put the SpecChecker for this homework in your Build Path. Run the SpecChecker as a Java
Application and fix problems until all tests pass.

2. Commit and push your work to your repository. Verify that your solution is on Bitbucket.

A passing SpecChecker does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The SpecChecker checks some of them,
but not all.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire
of tools to sniff out academic dishonesty, including: drones, CS 145 moles, and a piece of
software called MOSS that rigorously compares your code to every other submission. You
don’t want to live in a world serviced by those who squeaked by through questionable means.
For your future self, career, and family, do your own work.

• Your code must be submitted correctly and on time. Most excuses devolve into, “I started
too late.” The fix for this problem is not an extension.

4

http://www.twodee.org/teaching/cs145x/homework/hw4/SplittinImage.java
http://www.twodee.org/teaching/cs145x/homework/hw4/SplittinImage.java

	Overview
	Requirements
	TwixPix
	Main

	Submission

