
CS 145 Half-Homework 2
Routine Ops

1 Overview

Your objective in this homework is to make code self-contained and repeatable using methods. You
will do this in the context of solving several disconnected problems that have no overarching story.
Sorry.

Breaking code up into methods has several nice benefits: it enables large problems to be de-
composed into smaller, more mind-sized bytes; small methods with a distinct purpose are easier
to test than gangly spans of code; and because of the scope boundaries of methods, data becomes
more insulated and less likely to be clobbered.

Additionally, methods have an aesthetic quality that resonates with the human spirit: we want
to make things that have lasting value. Methods can be easily shared with others and reused in
other contexts. To connect to these other contexts, methods accept parameters and produce return
values.

2 Requirements

Complete the three classes described below. Place all classes in package hw2. Make all methods
static.

2.1 ShapeUtilities

1. Write a method getCircleArea that accepts a double radius parameter. It returns the area
of a circle with the given radius. Use Math.PI.

2. Write a method getAnnulusArea that accepts in the following order two double parameters:
an outer radius and an inner radius. An annulus is a 2-D ring, a larger circle with a smaller
concentric circle cut out. Don’t repeat yourself. You may assume the outer radius is greater
than the inner radius.

2.2 StringUtilities

1. Write a method extractBracketed that accepts a String parameter containing some text
surrounded by square brackets. It returns the bracketed text, sans brackets. For exam-
ple, extractBracketed("Respect [covers] the empty hole where love should be.")

→ “covers”. Assume the String contains exactly one pair of brackets.

2. Write a method getThird that accepts a String parameter of a comma-separated list. It
returns the third item in the list. For example, getThird("Alice,Bob,Carol,Dwight,Eve")
→ “Carol”. There are several ways to solve this problem. My personal favorite is to use
a Scanner. Instead of constructing the Scanner to read from System.in, pass the list in
instead. Then change the delimiter, which breaks words up on whitespace by default, using
the useDelimiter method. Assume the list contains at least three items.

1



2.3 MathUtilities

1. Write a method getHypotenuseDifference that accepts as doubles the two side lengths of
a right triangle. Return the difference between the combined lengths of these sides and the
hypotenuse that shortcuts them. For example, getHypotenuseDifference(3, 4) → 2.

2. Write a method lerp that accepts five double parameters in the following order:

(a) The x-coordinate of the first endpoint of a line segment.

(b) The y-coordinate of the first endpoint of a line segment.

(c) The x-coordinate of the second endpoint of a line segment.

(d) The y-coordinate of the second endpoint of a line segment.

(e) An x-coordinate whose corresponding y-coordinate is to be determined.

This method assumes a line segment spans between the two endpoints and that the third
point lies on it somewhere. It interpolates between the known endpoints the exact position of
the third point, whose x-coordinate is known but whose y-coordinate is up to us to calculate.

Using a straight line to place missing information like this is called linear interpolation, or
lerp for short. Lerp routines are used heavily in computer graphics and scientific computing.
When you scale up a photo, you might be using linear interpolation to fill in colors between
the original pixels.

One can use similar triangles to determine the missing y-coordinate. The hypotenuse of the
large triangle spans between the two endpoints, and the hypotenuse of the smaller spans from
the first endpoint to the interpolated point. The lengths of the edges can then be determined:

(x1, y1)

(x2, y2)

(x?, y?)

x? - x1

y? - y1

y2 - y1

x2 - x1

(x?, y?)

(x1, y1)

(x2, y2)

Because the two triangles have the same proportions, we can craft an expression relating the
sides:

x? − x1
y? − y1

=
x2 − x1
y2 − y1

All but one of these values is known. We solve for and return y?.

2



3 Submission

To submit your work for grading:

1. Put the SpecChecker for this homework in your Build Path. Run the SpecChecker as a Java
Application and fix problems until all tests pass.

2. Commit and push your work to your repository. Verify that your solution is on Bitbucket.

A passing SpecChecker does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The SpecChecker checks some of them,
but not all.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire
of tools to sniff out academic dishonesty, including: drones, CS 145 moles, and a piece of
software called MOSS that rigorously compares your code to every other submission. You
don’t want to live in a world serviced by those who squeaked by through questionable means.
For your future self, career, and family, do your own work.

• Your code must be submitted correctly and on time. Most excuses devolve into, “I started
too late.” The fix for this problem is not an extension.

3


