
CS 145 Homework 6
Plot Plot

1 Overview

Choose Your Own Adventure books give the reader choices. For example, at the beginning of War
with the Evil Power Master, by R.A. Montgomery, you receive an alert that two planets have been
destroyed in a remote sector of space. The Evil Power Master claims responsibility. At the bottom
of page 3, you are presented with a choice:

• If you decide to check out Sector 31-47-89 immediately, turn to page 6.

• If you decide to call in unit commanders for a meeting with Congress, turn to page 8.

Based on your choices, you end up with different endings. What happens if we plot all the possible
paths through such a book? It’d probably look a bit like the following graph, which maps out
Deadwood City, by Edward Packard:

1

You may find it helpful to read up a bit on these books:

• http://mentalfloss.com/article/56160/brief-history-choose-your-own-adventure

• http://news.google.com/newspapers?id=_nUfAAAAIBAJ&sjid=XXUFAAAAIBAJ&dq=choose-your-
own-adventure&pg=1663%2C2191360

• http://io9.com/remember-inside-ufo-54-40-the-unwinnable-choose-your-o-1552187271

• http://samizdat.cc/cyoa

Your task in this homework is to develop an understanding of arrays. You will do so in the
context of translating a String representation of a Choose Your Own Adventure book into a graph
description. The graph description will be expressed in the DOT language. DOT graphs can be
converted to images using the dot interpreter, available for download at http://www.graphviz.org.
See http://sandbox.kidstrythisathome.com/erdos for a web-based converter. Producing images
is not a required part of this assignment, but it’s fun.

2 Requirements

Complete the classes described below. Place all code in package hw6.

2.1 Main

Write a class Main. It has a main method, which you are encouraged to use to test your code.
Nothing in particular is required of it, but it must exist.

2.2 PlotPlot

Write a class PlotPlot, which contains several routines for composing a graph of a branching plot.
It has the following public interface:

1. A method getChoicesForOnePage that accepts a String describing a single page and returns
an int array of the next pages. If the String is just "p", the page is a picture and null
is returned. If the String is the empty String, return an array with no elements—which is
different from null. Otherwise, the String looks something like "23" or "15,40,99".

The numbers represent the next possible pages that can be reached from this one. Multiple
numbers indicate the reader has reached a fork in the plot, while a single number just directs
the reader to the one next page in the current plot path. Whether there is one choice or
several, return these numbers in an int array, but subtract one from each number to make
future indexing easier. For example, getChoicesForAllPages("15,40,99") → {14, 39,
98}. String.split and Integer.parseInt may be helpful.

Test this method before moving on. To print an array easily, use some thing like:

System.out.println(Arrays.toString(pageChoices));

2

http://mentalfloss.com/article/56160/brief-history-choose-your-own-adventure
http://news.google.com/newspapers?id=_nUfAAAAIBAJ&sjid=XXUFAAAAIBAJ&dq=choose-your-own-adventure&pg=1663%2C2191360
http://news.google.com/newspapers?id=_nUfAAAAIBAJ&sjid=XXUFAAAAIBAJ&dq=choose-your-own-adventure&pg=1663%2C2191360
http://io9.com/remember-inside-ufo-54-40-the-unwinnable-choose-your-o-1552187271
http://samizdat.cc/cyoa
http://www.graphviz.org
http://sandbox.kidstrythisathome.com/erdos

2. A method getChoicesForAllPages that accepts a String describing all pages of the book
and returns a two-dimensional int array containing each page’s possible next pages. The
String looks something like "2|3|5,6,7|p|||", with each page’s choices separated by a “|”.
We interpret this example String as follows:

(a) Page 1 leads to page 2.

(b) Page 2 leads to page 3.

(c) Page 3 leads to page 5, 6, or 7.

(d) Page 4 is a picture.

(e) Page 5 is an end.

(f) Page 6 is an end.

(g) Page 7 is an end.

Visually, this book has the plot structure shown in figure 1a.

This method constructs and returns a two-dimensional array of choices for each page. The
outer index of the array is the page number. The element at index i is an inner array of choices
for page i. If page i is a picture, the element is null. If page i is an end, the element array
has 0 elements. The corresponding array that is returned for the book "2|3|5,6,7|p|||"is
shown in figure 1b.

(a) Plot plot (b) Choices array

Figure 1: Graph and array representations of "2|3|5,6,7|p|||".

Page numbers in the array are treated as one less than their actual value. For example, page
3 leads to pages 5, 6, and 7 in the printed book. In the array, an array containing 4, 5, and 6
is stored in element 2. Subtracting one makes using the page numbers as indices simpler.

As you implement this method, don’t redo the work of getting choices for one particular page.
You have a method for that. Instead, take this approach:

split book into its pages
make 2D book choices array
for each page
determine page’s choices
store page choices in the book choices array

3

String.split is helpful here, but it coalesces adjacent delimiters together, which will elim-
inate the ending pages, which have no choices. Additionally, the | character has a special
meaning to split. To prevent the coalescing and take away the special meaning of |, use
book.split("\\|", -1).

Test this method before moving on. You can easily print a high-dimensional array with
something like the following:

System.out.println(Arrays.deepToString(bookChoices));

3. A method getForkPages that accepts a 2D array as returned by getChoicesForAllPages.
It returns an ArrayList<Integer> of all the pages that have two or more choices. For
"2|3|5,6,7|p|||", a list containing 2 is returned.

4. A method getEndPages that accepts a 2D array as returned by getChoicesForAllPages. It
returns an ArrayList<Integer> of all the pages that end a path through the book. A page
ends a path if it has no next choices and is not a picture. For "2|3|5,6,7|p|||", a list
containing 4, 5, and 6 is returned.

5. A method getOrphanPages that accepts a 2D array as returned by getChoicesForAllPages.
It returns an ArrayList<Integer> of all the non-picture pages that are unreachable from
other pages. Whether these orphans are interpreted as mistakes or hidden treasures largely
depends on how secure you felt as a child.

You might find it advantageous to create a little helper array that tracks which pages do have
predecessors. Such an array can be constructed with the following pseudocode:

create a hasPrevious array with an element for each page
for each page p
for each choice c from page p
set c’s hasPrevious to true

Any pages that don’t have predecessors and are not pictures are orphans.

6. A method dotEndPages that accepts a 2D array as returned by getChoicesForAllPages. It
prints to System.out DOT commands to draw all the end page nodes with a double outline.
For "2|3|5,6,7|p|||", the following output is produced, with spaces marked as ␣:

␣␣5␣[peripheries=2];
␣␣6␣[peripheries=2];
␣␣7␣[peripheries=2];

Note that this method produces output to be consumed by the user, so our little trick of
subtracting one off the page numbers must be undone. The output page numbers are restored
to their original values.

7. A method dotOrphanPages that accepts a 2D array as returned by getChoicesForAllPages.
It prints to System.out DOT commands to draw all the orphan page nodes with a dashed
outline. For "2|3|5,6,7|p||||9,10||", the following output is produced:

␣␣8␣[style=dashed];

4

Each line is indented two spaces. Note that this method produces output to be consumed
by the user, so our little trick of subtracting one off the page numbers must be undone. The
output page numbers are restored to their original values.

8. A method dotPlot that accepts a 2D array as returned by getChoicesForAllPages. It
prints to System.out DOT commands to draw edges between each page and its choices. For
"2|3|5,6,7|p||||9,10||", the following output is produced:

␣␣1␣->␣2;
␣␣2␣->␣3;
␣␣3␣->␣5;
␣␣3␣->␣6;
␣␣3␣->␣7;
␣␣8␣->␣9;
␣␣8␣->␣10;

Each line is indented two spaces. Note that this method produces output to be consumed
by the user, so our little trick of subtracting one off the page numbers must be undone. The
output page numbers are restored to their original values.

9. A method dot that accepts a 2D array as returned by getChoicesForAllPages. It prints to
System.out DOT commands to draw a graph of the book, with end pages marked with a
double outline, orphan pages marked with a dashed outline, and edges connecting each page
to its choices. For "2|3|5,6,7|p||||9,10||", the following output is produced:

digraph␣G␣{
␣␣5␣[peripheries=2];
␣␣6␣[peripheries=2];
␣␣7␣[peripheries=2];
␣␣9␣[peripheries=2];
␣␣10␣[peripheries=2];
␣␣8␣[style=dashed];
␣␣1␣->␣2;
␣␣2␣->␣3;
␣␣3␣->␣5;
␣␣3␣->␣6;
␣␣3␣->␣7;
␣␣8␣->␣9;
␣␣8␣->␣10;
}

After applying the dot interpreter to this output, the following graph is produced:

5

10. A method getPathOfFirsts that accepts a 2D array as returned by getChoicesForAllPages.
It returns an ArrayList<Integer> of the sequence of pages that the reader follows when
always taking the first choice. That is, the reader uses the following algorithm:

start at page 0
while I’m not yet at an end
pick choice 0 of current page

For "2|3|5,6,7|p|||", the list returned is 0, 1, 2, 4.

3 Extra

Anyone who shares on Piazza a choices String as described in getChoicesForAllPages and its
resulting graph for some Choose Your Own Adventure book not already posted will receive two
extra credit participation points.

4 Submission

To submit your work for grading:

1. Put the SpecChecker for this homework in your Build Path. Run the SpecChecker as a Java
Application and fix problems until all tests pass.

2. Commit and push your work to your repository. Verify that your solution is on Bitbucket.

A passing SpecChecker does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The SpecChecker checks some of them, but
not all.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire of
tools to sniff out academic dishonesty, including: drones, CS 145 moles, and a piece of software
called MOSS that rigorously compares your code to every other submission. You don’t want
to live in a world serviced by those who squeaked by through questionable means. For your
future self, career, and family, do your own work.

• Your code must be submitted correctly and on time. Most excuses devolve into, “I started too
late.” The fix for this problem is not an extension.

6

	Overview
	Requirements
	Main
	PlotPlot

	Extra
	Submission

