
CS 145 Homework 5
Playright

1 Overview

Your objective in this homework is to introduce yourself to with working with arrays, files, and
exceptions. You will do this in the context of producing an animation using a single image. Sounds
crazy, huh? To get a feel for what inspired this homework, watch Rufus Butler Seder talk about
his Scanimation books at http://scanimationbooks.com/about-scanimation.

Seder shows that a movie consisting of just a few frames can be compressed into a single static
image. When you slide a custom filter over the static image, different frames of the movie become
visible and the image appears animated. For example, consider the four-frame movie shown in
figure 1.

(a) Frame 0 (b) Frame 1 (c) Frame 2 (d) Frame 3

Figure 1: Suzanne, mascot of the Blender modeling software, spins her head across four frames.

We compress the movie into a single image by copying columns 0, 4, 8, 12, and so on from
frame 0. Columns 1, 5, 9, 13, and so on are copied from frame 1. Columns 2, 6, 10, 14, and so on
from frame 2. And so on, for as many frames as there are. The result is shown in figure 2.

Figure 2: Frame 3

On its own, the image is hard to parse visually. Let’s overly a sliding filter. We set the filter to
block 3 columns at a time. As it slides from left to right, only one frame’s columns are visible. Using
a graphical user interface that we provide, we drag the filter to “reanimate” the movie. Snapshots
of the animation are shown in figure 3.

1

http://scanimationbooks.com/about-scanimation


Figure 3: Viewing the static image with a sliding filter restores the animation.

2 Requirements

Complete the two classes described below. Place all classes in package hw5. Make all methods
static.

2.1 Playright

Write a class Playright, which contains several methods for producing movies that trade space for
time. We assume that the frames of a movie are stored in a directory somewhere on disk, that the
directory contains only images and optional meta files like .DS Store on OS X and Thumbs.db on
Windows, and that the individual frames are named in dictionary order. That is, frame 0 comes
alphabetically before frame 1, which comes alphabetically before frame 2, and so on. You are asked
to complete the following tasks:

1. Write a method getSortedContents that accepts a File parameter for a directory. Return
a sorted File array of the directory’s contents. See Arrays.sort and File.listFiles. This
method is used to put the list of frames in the proper order. File.listFiles by itself
guarantees no particular order.

2. Write a method filterMeta that accepts a File array parameter. It returns a File array
containing only those files whose names are neither .DS Store nor Thumbs.db. Files in the
returned array appear in the same relative order as they do in the parameter array. This
method is useful for filtering out non-image files.

3. Write a method readImages that accepts an array of Files as a parameter. Assume all
elements are image files. Return a new BufferedImage array, where each image element is
read from the file on disk identified by the corresponding element of the File array. See
ImageIO.read. This method does not have enough information to handle any exceptions. It
passively throws any IOExceptions that come its way.

4. Write a method compress that accepts an array of BufferedImages as a parameter. If
the array has no elements, throw an IllegalArgumentException. Otherwise, create a new
BufferedImage, column 0 of which comes from column 0 of image 0, column 1 of which comes
from column 1 of image 1, column 2 of which comes from column 2 of image 2, and so on.
Once you get into columns that exceed the number of images, start back at image 0 again.
Return the single BufferedImage that you produce.

2



5. Write a method compressAndShow that accepts a File parameter for a movie directory.
It sorts the directory’s children, filters out the meta files, reads in the images, and com-
presses them into a single image. It then displays the movie in a viewer that we have pro-
vided. The viewer may be downloaded from http://www.twodee.org/teaching/cs145/

2015c/homework/hw5/PlayrightViewer.java.

Construct a viewer in the following manner:

new PlayrightViewer(image, nFrames);

Note that it expects both the single movie image and the number of frames that have been
spliced together. In the viewer, drag the slider to advance frames. Uncheck the checkbox to
see the spliced image in its entirety.

2.2 Main

Write a class Main. It has a main method, which prompts a user to select a directory containing
frames of a movie. It then compresses the directory into a single image and displays it using the
PlayrightViewer. If the compression fails for any reason, the method should start over from the
beginning, prompting the user for another directory. Use the loop until fixed pattern we discussed
in lecture:

isValid = false

while !isValid

try

attempt the dangerous

isValid = true

catch

print "Uh oh! Let’s try that again."

One can pop open a file picker dialog for directories using the following code:

// Show a file picker for directories only.

JFileChooser chooser = new JFileChooser();

chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

int result = chooser.showOpenDialog(null);

// If the user hit Okay...

if (result == JFileChooser.APPROVE_OPTION) {

File selectedDir = chooser.getSelectedFile();

}

3 Extra

Any student who posts on Piazza a sequence of images and the resulting compressed static image
under folder hw5 extra credit will receive one extra credit participation point. Students who post
an accompanying movie (captured via phone or recording software) will receive two.

4 Submission

To submit your work for grading:

3

http://www.twodee.org/teaching/cs145/2015c/homework/hw5/PlayrightViewer.java
http://www.twodee.org/teaching/cs145/2015c/homework/hw5/PlayrightViewer.java


1. Put the SpecChecker for this homework in your Build Path. Run the SpecChecker as a Java
Application and fix problems until all tests pass.

2. Commit and push your work to your repository. Verify that your solution is on Bitbucket.

A passing SpecChecker does not guarantee you credit. Your grade is conditioned on a few things:

• You must meet the requirements described above. The SpecChecker checks some of them,
but not all.

• You must not plagiarize. Write your own code. Talk about code with your classmates. Ask
questions of your instructor or TA. Do not look at others’ code. Do not ask questions specific
to your homework anywhere online but Piazza. Your instructor employs a vast repertoire
of tools to sniff out academic dishonesty, including: drones, CS 145 moles, and a piece of
software called MOSS that rigorously compares your code to every other submission. You
don’t want to live in a world serviced by those who squeaked by through questionable means.
For your future self, career, and family, do your own work.

• Your code must be submitted correctly and on time. Most excuses devolve into, “I started
too late.” The fix for this problem is not an extension.

4


	Overview
	Requirements
	Playright
	Main

	Extra
	Submission

