
CS 145: Homework 2
Was Here

1 Description

Your primary goals in this homework are to learn about conditional statements, loops, and
file I/O. You will do this in context of writing a tool for converting a plain text geographical
biography into a file that can explored with Google Earth or Google Maps.

You will write two new classes for this homework: KeyholeIO and WasHere. Place these
two classes in a package named hw2.

2 Background

Google Earth marks locations on its virtual globe with placemarks. The simplest placemark—
a pin placemark—points to an exact latitude-longitude. One can also define region place-
marks, which cover broader areas, and line placemarks, which mark things like borders and
really long walls. Placemarks are typically positioned manually or automatically placed by
Google Earth itself, but you can open a file of placemarks. Creating these files is what you
will do in this homework.

The file is structured using the Keyhole Markup Language (KML). Here’s an example of
a file containing exactly one of each kind of placemark:

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>

<Style id="seethrough"><PolyStyle><color>7fffffff</color></PolyStyle></Style>

<!-- A pin placemark -->

<Placemark>

<name>NAME</name>

<description>DESCRIPTION</description>

<Point>

<coordinates>LAT0,LON0</coordinates>

</Point>

</Placemark>

<!-- A line placemark -->

<Placemark>

<name>NAME</name>

<description>DESCRIPTION</description>

<LineString>

<tessellate>1</tessellate>

<coordinates>LAT0,LON0 LAT1,LON1 LAT2,LON2 ...</coordinates>

1



</LineString>

</Placemark>

<!-- A region placemark -->

<Placemark>

<name>NAME</name>

<description>DESCRIPTION</description>

<styleUrl>#seethrough</styleUrl>

<Polygon>

<outerBoundaryIs>

<LinearRing>

<coordinates>LAT0,LON0 LAT1,LON1 LAT2,LON2 ...</coordinates>

</LinearRing>

</outerBoundaryIs>

</Polygon>

</Placemark>

</Document>

</kml>

Words in all capital letters need to be replaced with real content. For a fully working
example, see your instructor’s geographical biography, which demonstrates all three place-
marks.

3 Requirements

In this homework, you will convert a non-KML geographic file into a KML file. Your solution
will be broken down in two classes: KeyholeIO and WasHere.

3.1 KeyholeIO

Your KeyholeIO class handles the output of placemarks in KML format. It must meet this
specification:

• Has a method openKML that accepts a PrintWriter as its sole parameter. It writes
the first four lines of the above example KML file to the PrintWriter object. Test
this method before moving on.

• Has a method closeKML that accepts a PrintWriter as its sole parameter. It writes
the last two lines of the above example KML file to the PrintWriter object. Test this
method before moving on.

• Has a method writePin that takes the following parameters, in this order: a PrintWriter,
a String for the place name, a String for the place description, and a String for the

2



comma-separated longitude-latitude. It writes the pin placemark to the PrintWriter

as seen in the example. Test this method before moving on.

• Has a method writeLine that takes the following parameters, in this order: a PrintWriter,
a String for the place name, a String for the place description, and a String for the
space-separated sequence of comma-separated longitude-latitude pairs. It writes the
line placemark to the PrintWriter as seen in the example. Test this method before
moving on.

• Has a method writeRegion that takes the following parameters, in this order: a
PrintWriter, a String for the place name, a String for the place description, and a
String for the space-separated sequence of comma-separated longitude-latitude pairs.
It writes the region placemark to the PrintWriter as seen in the example. Test this
method before moving on.

• Has a method writePlacemark that takes the following parameters, in this order: a
PrintWriter, a String for the place name, a String for the place description, and a
String containing one or more comma-separated longitude-latitude pairs. If only one
pair is present, it writes a pin placemark to the PrintWriter object. If the last pair
is identical to the first, it writes a region placemark, but does not write the repeated
longitude-latitude to the PrintWriter. Otherwise it writes a line placemark. (Call
upon your existing methods.) Test this method before moving on.

3.2 WasHere

Your WasHere class handles the conversion of the geographical biography from an unstruc-
tured format to the KML format. It must meet this specification:

• Has a method convert that takes in two parameters. The first is a String parameter
for the path to a geographic biography file containing placemark information in a
plain-text, non-KML format. The file has this format:

name1

description1

coords1

name2

description2

coords2

...

See your instructor’s biography for a complete example. You may assume the file is
well-formed and has a number of lines that is a multiple of three. The coordinate lines
may have one longitude-latitude pair or they may have several separated by spaces.
The second parameter is a String path to the KML file to write.

3



This method opens the biography file and writes it out to the KML file. See the KML
version of your instructor’s biography for reference. Opening files is an operation that
may fail, remember. Mark your method with throws FileNotFoundException, as
discussed in lecture.

• Has a main method that calls convert and passes it the paths to your biography
file and KML file. If you’d like to include your biography in your package and you
biography is named “mybio.txt”, pass the path “src/hw2/mybio.txt”.

Please share testing code on Piazza. You are encouraged to write your own biography
and resulting KML files on Piazza. You may vote exactly once for your favorite biography
(not your own, however) with a “+1” reply in the followup discussion. The anthem of the
student with the most votes will be trumpeted across many nations.

4 Files

• SpecChecker: twodee.org/teaching/cs145/2012A/homework/speccheck hw2.jar
• Example input: twodee.org/teaching/cs145/2012A/homework/washere eg.txt
• Example output: twodee.org/teaching/cs145/2012A/homework/washere eg.kml

5 Other expectations and submission

See homework 1 and preassignment 1 to see what else you are graded on and how to submit
your work.

4

http://www.twodee.org/teaching/cs145/2012A/homework/speccheck_hw2.jar
http://www.twodee.org/teaching/cs145/2012A/homework/washere_eg.txt
http://www.twodee.org/teaching/cs145/2012A/homework/washere_eg.kml

	Description
	Background
	Requirements
	KeyholeIO
	WasHere

	Files
	Other expectations and submission

