
CS 145: Preassignment 1
Rotex

1 Description

Your primary goal in this homework is to acquaint yourself with expressing your deepest
algorithmic desires in Java. In this case, your deepest desires are fairly narrow—you wish
to encode text in ROT13. This encoding rotates each alphabetic character in a text to
the corresponding letter 13 positions later in the alphabet, wrapping around back to ‘a’ as
necessary. The full mapping is:

a b c d e f g h i j k l m n o p q r s t u v w x y z
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
n o p q r s t u v w x y z a b c d e f g h i j k l m

ROT13 is used in online forums to facilitate the discussion of plots or the exchange of
riddles without revealing spoilers to casual readers. A similar encoding was used by Julius
Caesar to encrypt secret messages.

As you implement this ROT13 encoder, you will learn about the indispensable Scanner

and String classes. Consult their documentation to see how they can help you accomplish
your task.

2 Requirements

To receive full credit for this assignment, you must satisfy the following requirements:

• Write all code in a class named Rotex in a package named pre1. Case and spelling
matter. And they will all semester.

• Prompt the user to enter a message to encode with the prompt “Message: ”. Get a
line of text from the user, encode it, and print it to the console entirely in lowercase,
preceded by the text “Rotated: ”, and followed by a linebreak. Following is the
interaction seen at the console for two runs of the program, with user input underlined.
Your code must produce identical interactions for the same user input.

Message: abcdefghijklmnopqrtuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

Rotated: nopqrstuvwxyzabcdeghijklm0123456789nopqrstuvwxyzabcdefghijklm

Message: Jo and Laurie would have been perfect together, but alas!

Rotated: wb naq ynhevr jbhyq unir orra cresrpg gbtrgure, ohg nynf!

• Correctly submit your code.

1

http://en.wikipedia.org/wiki/ROT13


3 Suggested Process

Teaching a machine to do something can be challenging. Please follow this suggested process
to getting working code:

1. Do some examples by hand first. On paper. Write down your steps in plain English
as a first draft to your Java solution.

2. Read the String and Scanner documentation and book examples.

3. Translate your draft algorithm into Java, little by little. Write a line and test. Repeat.

4. Test your code yourself. Insert temporary print statements or learn to use the Eclipse
debugger. The SpecChecker is intentionally not built to help pinpoint errors.

4 Files

• SpecChecker: twodee.org/teaching/cs145/2012A/homework/speccheck pre1.jar

5 Submission

This is a preassignment, and preassignments are graded by SpecCheckers, not your instructor
or TAs. The good news is you get to tweak your code until you have a perfect score. The
bad news is that there’s a little setup involved—and you must leave yourself enough time
to work out kinks. Deadlines are not extended for botched configurations. Please
follow these directions closely to test and submit your work:

1. Right-click on your project and choose Build Path → Add Libraries. Select JUnit,
click Next, choose JUnit 4 from the dropdown menu, and click Finish. This only needs
to be done once per project. So, if you use the same project for all your code in this
class, you’ll never need to execute this step again.

2. Download the SpecChecker JAR file.

3. Drag the JAR file onto your pre1 package in Eclipse. Right-click on it, and select
Build Path → Add to Build Path. It will migrate to the Referenced Libraries node in
your project.

4. Run the JAR file by selecting it and hitting the Play button in the Eclipse toolbar.
Run it as a Java application if prompted.

5. Address any errors. Barring submission errors, the score you see will be the
score you are assigned in the gradebook.

2

http://www.twodee.org/teaching/cs145/2012A/homework/speccheck_pre1.jar


6. Once you are satisfied with your score, choose a directory in which to save pre1.zip.
This file contains a compressed version of Rotex.java. Open it in your favorite archiver
utility to ensure it contains your code.

7. Drop your submission into W:\c s\CJohnson\cs145\<YOUR-USERNAME>. You may
overwrite this file as often as you like before the deadline. Just make sure the di-
rectory contains only one *.zip file with lowercase pre1 in its name.

3


	Description
	Requirements
	Suggested Process
	Files
	Submission

