
CS 145: Preassignment 3
PostOps

1 Description

Your primary goal in this homework is to introduce yourself to arrays. You will do so by
writing a calculator to evaluate postfix expressions.

Likely you’ve never heard of postfix expressions before. That’s because many of us use
infix notation all through our education. With infix notation, operators appear between
their operands. In postfix, they appear after. The infix expression 6 * 7 is 6 7 * in postfix
notation.

Postfix is interesting for two reasons. First, it doesn’t require parentheses to alter the
precedence. For example, infix (1 + 3) * 2 is postfix 1 3 + 2 *. Second, and as a direct
consequence of the first, it is much easier to teach a machine to evaluate a postfix expression
than an infix one.

2 Requirements

To receive full credit for this assignment, you must write a class PostOps in package pre3

that meets the following specification:

• Has a method contains that accepts a String array parameter for a haystack and a
String parameter for a needle, in that order. It searches for the needle in the haystack.
That is, it checks to see if the needle is identical to at least one of the elements of the
array. If found, it returns true. Otherwise, it returns false. Test this method in
isolation before moving on.

• Has a method evaluate that accepts a String parameter for a postfix expression to
evaluate. It returns the answer as a double. Support the following operators/functions:
+, -, *, /, cos, sin, and tan. (Assume the parameters to the trigonometric functions
are expressed in radians, just like the methods in the Math class.) The algorithm for
evaluating a postfix expression is elegant compared to its infix counterpart. We express
it here in pseudocode:

make a list of tokens comprising expression

make a list of operands, initially empty

for each token in expression

if token is a number

append it to operand list

else (token is an operator/function)

if token is +

b = remove operand from end of list

1



a = remove operand from end of list

append a + b to operand list

else if ...

the answer is sole remaining operand in list

Let’s work through an example of evaluating "3 1 5 - *" with this algorithm.

1. We first create an array of white-space separated tokens contained in the expres-
sion. Writing this yourself is an informative exercise, but the split method in
the String class is happy to do it for you.

2. We then make an array of doubles. It has to be big enough to hold all the queued-
up operands we may run into. We know there will never be more operands than
there are tokens in the expression (in this case, 5), so we size our array accordingly.
We mark the first spot as the next spot to fill:

operands

↑
3. We see "3" as the first token. Is this a number? There are several ways to

tell. Assuming we were passed a valid expression, one way is to use our contains
method and pass it an array of supported operators and functions as the haystack
and this token as the needle. Token "1" doesn’t appear in the list, so we assume
it must be a number. We convert it from a String into a double with the
parseDouble method found in the Double class. We append the number to the
operand list and update our end marker:

operands 3.0

↑
4. The next token is "1". This is much like the previous step:

operands 3.0 1.0

↑
5. The next token is "5". Again:

operands 3.0 1.0 5.0

↑
6. The next token is "-". This token is contained in our array of operators. We pop

off the number to subtract:

b 5.0

operands 3.0 1.0

↑
And we pop off the number to subtract from:

a 1.0

2



operands 3.0

↑
Now we append the difference, a - b:

operands 3.0 -4.0

↑
7. The next token is "*". This token is contained in our array of operators. We pop

off one operand:

b -4.0

operands 3.0

↑
And we pop off the other:

a 3.0

operands

↑
Now we append the product, a * b:

operands -12.0

↑
8. We have no tokens left. Our answer is the sole operand remaining in the list.

Test this method in isolation before moving on.

• Has a method evaluate that takes a String array of expressions as its only parameter.
It returns a double array of the exact same size as the expressions array and in which
element i is the result of evaluating expression i. Test this method in isolation before
moving on.

3 Files

• SpecChecker: twodee.org/teaching/cs145/2012A/homework/speccheck pre3.jar

4 Suggested Process and Submission

Please see preassignment 1 for the process on how to tackle coding assignments and submit
them.

3

http://www.twodee.org/teaching/cs145/2012A/homework/speccheck_pre3.jar

	Description
	Requirements
	Files
	Suggested Process and Submission

