
CS 145: Homework 2
Maze

1 Description

Your primary goals in this homework are to learn about conditional statements and loops.
You will do this in the context of writing a maze navigator.

You will write two classes for this homework: Utilities and Maze. Place them in the
hw2 package.

2 Introduction

Your software will load mazes in from a file and allow the user to move around them. Legal
maze files will look something like this example:

4 3

2 0

1 2

**.*

..

*.**

The first line is the maze’s width and height, second the starting location (0-based), and the
third the ending location (0-based). The maze follows on the remaining lines, with asterisks
representing walls and periods representing open paths. The origin—location (0, 0)—of the
maze is the first character read.

The user wanders through the maze in a text-based console interaction. The maze is
printed, with the player’s location marked with ‘8’. A prompt is offered, at which the user
uses the WASD keys, W to go north (toward the origin), A to go west, S to go south (away
from the origin), and D to go east. The maze is reprinted and another prompt is offered.
The game ends when the user reaches the ending location or types Q to quit. Here’s the
console interaction used to navigate the example maze:

**8*

..

*.**

> s

**.*

.8

*.**

> a

1

**.*

8.

*.**

> s

**.*

..

*8**

You escaped in 0.627 seconds!

3 Utilities

In order for us to work with the maze easily, you will need to shimmy it into a single String,
a process called serialization. To serialize our maze, we’ll just lay the maze lines end-to-end.
The example maze above becomes “**.**..**.**” when serialized. To work naturally with
the maze using Cartesian coordinate pairs, we’ll need to convert Cartesian coordinates to
String indices, a service which Utilities will provide. It has:

• A static method cartesianToIndex that takes four int arguments and returns an
int. The first two arguments are the maze’s width and height, and the last two are
the (x, y) coordinate pair whose index we are trying to determine. If (x, y) are outside
the 0-based bounds of the maze, -1 is returned. Otherwise, the index of the character
at position (x, y) is returned. Draw some pictures to work out the formula for the
conversion. Test this method before moving on.

4 Maze

Your Maze class serves as the main application class, though it defines a variety of helper
methods that decompose the big task into smaller subtasks. Probably these helper methods
should be private, but please make them public so our grading code can call them. All
are static. It has:

• A method print that returns nothing and takes these arguments: the serialized maze
as a String, the width of the maze, the height of the maze, the x-coordinate of the
player’s position, and the y-coordinate of the player’s position. The last four arguments
are all ints. It prints the maze line by line (deserialized), plotting ‘8’ at the player’s
position. Test this method before moving on.

• A method traverse that returns nothing and takes these arguments: the serialized
maze as a String, the width of the maze, the height of the maze, the x-coordinate of

2

the starting position, the y-coordinate of the starting position, the x-coordinate of the
ending position, and the y-coordinate of the ending position. All arguments but the
first are ints. This method lets the user walk through the maze. It places the user
at the starting position, prints the mazes, prompts, and appropriately responds to the
command. If the user enters Q, the method finishes. If the player enters W, A, S, or
D, the user is moved, unless the move would position the user outside the maze or on a
wall, in which case, some clear message like “You can’t go that way!” is printed. These
commands may be entered in either lower- or uppercase. If the user enters any other
command, “Huh?” or some similar message is printed. This interaction continues until
the user reaches the exit position or enters Q. If the user actually escaped the maze,
the time it took to successfully navigate is printed. (Use System.currentTimeMillis

to get clock readings.) Test this method before moving on.

• A method traverse that returns nothing and takes a single String argument, a path
to a maze stored in a file. It reads the maze in from the file and call the other traverse
method.

• A main method that either starts traversing a maze stored in a file. You can either
hardcode the path or prompt the user to enter a path.

You are invited to share maze files and best times on Piazza.

5 Other Expectations

We need to be able to read your code. Some of your grade will be based on stylistic matters—
not just a functioning final result.

• Variable and method names start with a lowercase letter and have capitalized internal
words, e.g., kittenCount.

• Code should be documented. Explain what you are doing in brief statements.

• Code should be indented properly. Hit Control-Shift-F inside your Java files to let
Eclipse clean up your code.

6 Extra Credit

3 points extra credit will be given if you provide a method Maze.autotraverse that takes a
String argument for a maze file and automatically navigates (without user interaction) the
maze. This code should not interfere with the main assignment code.

7 Submission

See hw1 for submission instructions.

3

	Description
	Introduction
	Utilities
	Maze
	Other Expectations
	Extra Credit
	Submission

